【題目】如圖,矩形中,為的中點,將沿翻折得到,延長交于G,,垂足為H,連接,.以下結論:①;②;③;④;其中正確的個數(shù)是()
A.1B.2C.3D.4
【答案】C
【解析】
根據(jù)矩形的性質、中點的定義、折疊的性質以及銳角的三角形函數(shù)的知識逐項判斷即可.
解:∵矩形正方形ABCD中,AB=4,AD=6,E為AB的中點
∴AD= BC =6,AE=BE=2,∠A=∠C=∠ABC=90°
∵△ADE沿DE翻折得到△FDE
∴∠AED=∠FED,AD=FD=6,AE=EF=2,∠A=∠DFE=90°
∴BE=EF=2,∠DFG=∠C=90°
∴∠EBF=∠EFB
∴∠AED+∠FED=∠EBF+∠EFB
∴∠DEF=∠EFB
∴BF//ED,故①正確;
∵BF//ED
∴∠ABF=∠AED
∵∠ABF+∠FBH=90°,∠AED+∠ADE=90°
∴∠FBH=∠ADE
∴tan∠FBH ==tan∠ADE=
∴=
∴BH=3FH,故②正確;
③過點E作EM⊥BF垂足為M,易得△EMF∽△DFE
∴ ,可得FM=,即BF=
易得△BFH∽△DEF
∴, BH=3FH,可得FH=,BH=
設HG=x,FH⊥BC
∴△GFH∽△GEB
∴,即,解得:x=
∴BG=BH+HG=
∴
故③正確;
S△BFG=.
故④錯誤.綜上共有3個正確.
故答案為C.
科目:初中數(shù)學 來源: 題型:
【題目】已知,在Rt△ABC和Rt△DEF中,∠ACB=∠EDF=90°,∠A=30°,∠E=45°,AB=EF=6,如圖1,D是斜邊AB的中點,將等腰Rt△DEF繞點D順時針方向旋轉角α(0°<α<90°),在旋轉過程中,直線DE,AC相交于點M,直線DF,BC相交于點N.
(1)如圖1,當α=60°時,求證:DM=BN;
(2)在上述旋轉過程中,的值是一個定值嗎?請在圖2中畫出圖形并加以證明;
(3)如圖3,在上述旋轉過程中,當點C落在斜邊EF上時,求兩個三角形重合部分四邊形CMDN的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α(0°<α≤90°),點F,G,P分別是DE,BC,CD的中點,連接PF,PG.
(1)如圖①,α=90°,點D在AB上,則∠FPG= °;
(2)如圖②,α=60°,點D不在AB上,判斷∠FPG的度數(shù),并證明你的結論;
(3)連接FG,若AB=5,AD=2,固定△ABC,將△ADE繞點A旋轉,當PF的長最大時,FG的長為 (用含α的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的鉛直高度BH與水平寬度AH的比)
(1)求點B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測角器的高度忽略不計,結果精確到0.1米.參考數(shù)據(jù):1.414,1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象交反比例函數(shù)y=(x>0)的圖象于點A、B,交x軸于點C.
(1)求m的取值范圍;
(2)若點A的坐標是(2,-4),且=,求m的值和一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點E在CD上,將△BCE沿BE折疊,點C恰落在邊AD上的點F處,點G在AF上,將△ABG沿BG折疊,點A恰落在線段BF上的點H處,有下列結論:①∠EBG=45°;②S△ABG=S△FGH;③△DEF∽△ABG;④AG+DF=FG.其中正確的是_____.(把所有正確結論的序號都選上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面內有一等腰直角三角板(∠ACB=90°)和一直線MN,過點C作CE⊥MN于點E,過點B作BF⊥MN于點F.當點E與點A重合時(如圖①),易證:AF+BF=2CE;當三角板繞點A順時針旋轉至圖②、圖③的位置時,上述結論是否仍然成立?若成立,請給予證明;若不成立,線段AF、BF、CE之間又有怎樣的數(shù)量關系,請直接寫出你的猜想,請直接寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在學校組織的數(shù)學競賽中,八(1)班比賽成績分為、、、四個等級,其中相應等級的得分依次記為100分,90分,80分,70分,學校將八(1)班成績現(xiàn)整理并繪制成如下的統(tǒng)計圖.請你根據(jù)以上提供的信息解答下列問題:
(1)請補全條形統(tǒng)計圖
(2)八年級一班競賽成績眾數(shù)是________,中位數(shù)落在________類.
(3)若該校有1500名學生,請估計該校本次競賽成績?yōu)?/span>類的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC 的頂點分別為 A(-2,2)、B(-4,5)、C(-5,1)和直線 m (直線 m 上各點的橫坐標都為 1).
(1)作出△ABC 關于 軸對稱的圖形△A1B1C1,并寫出點 A1 的坐標;
(2)作出點 C關于直線 m 對稱的點C2 , 并寫出點C2 的坐標;
(3)在軸上找一點P,使 PA+PC的值最小,請直接寫出點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com