【題目】如圖,頂點(diǎn)M在y軸上的拋物線與直線y=x+1相交于A、B兩點(diǎn),且點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為2,連結(jié)AM、BM.
(1)求拋物線的函數(shù)關(guān)系式;
(2)判斷△ABM的形狀,并說明理由
(3)把拋物線與直線y=x的交點(diǎn)稱為拋物線的不動(dòng)點(diǎn).若將(1)中拋物線平移,使其頂點(diǎn)為(m,2m),當(dāng)m滿足什么條件時(shí),平移后的拋物線總有不動(dòng)點(diǎn).
【答案】
(1)
解:∵A點(diǎn)為直線y=x+1與x軸的交點(diǎn),
∴A(﹣1,0),
又B點(diǎn)橫坐標(biāo)為2,代入y=x+1可求得y=3,
∴B(2,3),
∵拋物線頂點(diǎn)在y軸上,
∴可設(shè)拋物線解析式為y=ax2+c,
把A、B兩點(diǎn)坐標(biāo)代入可得,解得,
∴拋物線解析式為y=x2﹣1
(2)
解:△ABM為直角三角形.理由如:
由(1)拋物線解析式為y=x2﹣1可知M點(diǎn)坐標(biāo)為(0,﹣1),
∴AM=,AB==,BM==,
∴AM2+AB2=2+18=20=BM2,
∴△ABM為直角三角形
(3)
解:當(dāng)拋物線y=x2﹣1平移后頂點(diǎn)坐標(biāo)為(m,2m)時(shí),其解析式為y=(x﹣m)2+2m,即y=x2﹣2mx+m2+2m,
聯(lián)立y=x,可得,消去y整理可得x2﹣(2m+1)x+m2+2m=0,
∵平移后的拋物線總有不動(dòng)點(diǎn),
∴方程x2﹣(2m+1)x+m2+2m=0總有實(shí)數(shù)根,
∴△≥0,即(2m+1)2﹣4(m2+2m)≥0,
解得m≤,
即當(dāng)m≤時(shí),平移后的拋物線總有不動(dòng)點(diǎn).
【解析】(1)由條件可分別求得A、B的坐標(biāo),設(shè)出拋物線解析式,利用待定系數(shù)法可求得拋物線解析式;
(2)結(jié)合(1)中A、B、C的坐標(biāo),根據(jù)勾股定理可分別求得AB、AM、BM,可得到AB2+AM2=BM2 , 可判定△ABM為直角三角形;
(3)由條件可寫出平移后的拋物線的解析式,聯(lián)立y=x,可得到關(guān)于x的一元二次方程,根據(jù)根的判別式可求得m的范圍.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解二次函數(shù)的性質(zhì)(增減性:當(dāng)a>0時(shí),對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小),還要掌握勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線E1:y=x2經(jīng)過點(diǎn)A(1,m),以原點(diǎn)為頂點(diǎn)的拋物線E2經(jīng)過點(diǎn)B(2,2),點(diǎn)A、B關(guān)于y 軸的對稱點(diǎn)分別為點(diǎn)A′,B′.
(1)求m的值及拋物線E2所表示的二次函數(shù)的表達(dá)式;
(2)如圖1,在第一象限內(nèi),拋物線E1上是否存在點(diǎn)Q,使得以點(diǎn)Q、B、B′為頂點(diǎn)的三角形為直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由;
(3)如圖2,P為第一象限內(nèi)的拋物線E1上與點(diǎn)A不重合的一點(diǎn),連接OP并延長與拋物線E2相交于點(diǎn)P′,求△PAA′與△P′BB′的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠C=90°,AC=8,BC=6,點(diǎn)P以每秒1個(gè)單位的速度從A向C運(yùn)動(dòng),同時(shí)點(diǎn)Q以每秒2個(gè)單位的速度從A→B→C方向運(yùn)動(dòng),它們到C點(diǎn)后都停止運(yùn)動(dòng),設(shè)點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間為t秒.
(1)在運(yùn)動(dòng)過程中,求P,Q兩點(diǎn)間距離的最大值;
(2)經(jīng)過t秒的運(yùn)動(dòng),求△ABC被直線PQ掃過的面積S與時(shí)間t的函數(shù)關(guān)系式;
(3)P,Q兩點(diǎn)在運(yùn)動(dòng)過程中,是否存在時(shí)間t,使得△PQC為等腰三角形?若存在,求出此時(shí)的t值;若不存在,請說明理由(≈2.24,結(jié)果保留一位小數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了進(jìn)一步了解義務(wù)教育階段學(xué)生的體質(zhì)健康狀況,教育部對我市某中學(xué)九年級(jí)的部分學(xué)生進(jìn)行了體質(zhì)抽測,體質(zhì)抽測的結(jié)果分為四個(gè)等級(jí):優(yōu)秀、良好、合格、不合格,根據(jù)調(diào)查結(jié)果繪制了下列兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖提供的信息回答以下問題:
(1)在扇形統(tǒng)計(jì)圖中,“合格”的百分比為 ;
(2)本次體質(zhì)抽測中,抽測結(jié)果為“不合格”等級(jí)的學(xué)生有 人
(3)若該校九年級(jí)有400名學(xué)生,估計(jì)該校九年級(jí)體質(zhì)為“不合格”等級(jí)的學(xué)生約有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織了一批學(xué)生隨機(jī)對部分市民就是否吸煙以及吸煙和非吸煙人群對他人在公共場所吸煙的態(tài)度(分三類:A表示主動(dòng)制止;B表示反感但不制止,C表示無所謂)進(jìn)行了問卷調(diào)查,根據(jù)調(diào)查結(jié)果分別繪制了如下兩個(gè)統(tǒng)計(jì)圖.請根據(jù)圖中提供的信息解答下列問題:
(1)圖1中,“吸煙”類人數(shù)所占扇形的圓心角的度數(shù)是多少?
(2)這次被調(diào)查的市民有多少人?
(3)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該市共有市民760萬人,求該市大約有多少人吸煙?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一塊余料ABCD,AD∥BC,現(xiàn)進(jìn)行如下操作:以點(diǎn)B為圓心,適當(dāng)長為半徑畫弧,分別交BA,BC于點(diǎn)G,H;再分別以點(diǎn)G,H為圓心,大于GH的長為半徑畫弧,兩弧在∠ABC內(nèi)部相交于點(diǎn)O,畫射線BO,交AD于點(diǎn)E.
(1)求證:AB=AE;
(2)若∠A=100°,求∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,直線y=x+4經(jīng)過A,C兩點(diǎn).
(1)求拋物線的解析式;
(2)在AC上方的拋物線上有一動(dòng)點(diǎn)P.
①如圖1,當(dāng)點(diǎn)P運(yùn)動(dòng)到某位置時(shí),以AP,AO為鄰邊的平行四邊形第四個(gè)頂點(diǎn)恰好也在拋物線上,求出此時(shí)點(diǎn)P的坐標(biāo);
②如圖2,過點(diǎn)O,P的直線y=kx交AC于點(diǎn)E,若PE:OE=3:8,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC=90°,AB=BC,點(diǎn)E、F在AC上,∠EBF=45°,若AE=1,CF=2,則AB的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com