【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D為BC的中點(diǎn),若動(dòng)點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),沿著A→B→A的方向運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒(0≤t≤8),連接DE,當(dāng)△BDE是直角三角形時(shí),t的值為_____.
【答案】2或6或3.5或4.5.
【解析】
分別討論當(dāng)∠BDE=90°和∠BED=90°時(shí)的情況,分別求出AE或BE的長,進(jìn)而求解即可.
解:∵∠ACB=90°,∠ABC=60°,BC=2cm,
∴AB=BC÷cos60°=2÷=4,
①當(dāng)∠BDE=90°時(shí),
∵D為BC的中點(diǎn),
∴DE是△ABC的中位線,
∴AE=AB=×4=2,
點(diǎn)E在AB上時(shí),t=2÷1=2秒,
點(diǎn)E在BA上時(shí),點(diǎn)E運(yùn)動(dòng)的路程為4×2﹣2=6,
t=6÷1=6.
②當(dāng)∠BED=90°時(shí),BE=BDcos60°=×2×=0.5,
點(diǎn)E在AB上時(shí),t=(4﹣0.5)÷1=3.5,
點(diǎn)E在BA上時(shí),點(diǎn)E運(yùn)動(dòng)的路程為4+0.5=4.5,
t=4.5÷1=4.5,
綜上所述,t的值為2或6或3.5或4.5.
故答案為:2或6或3.5或4.5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C在一次函數(shù)的圖象上,它們的橫坐標(biāo)依次為,1,2,分別過這些點(diǎn)作x軸與y軸的垂線,則圖中陰影部分的面積之和是( )
A. 1 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的小正方形網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,
(1)將△AOB向右平移4個(gè)單位長度得到△A1O1B1,請畫出△A1O1B1;
(2)以點(diǎn)A為對稱中心,請畫出△ AOB關(guān)于點(diǎn)A成中心對稱的△ A O2 B2,并寫點(diǎn)B2的坐標(biāo);
(3)以原點(diǎn)O為旋轉(zhuǎn)中心,請畫出把△AOB按順時(shí)針旋轉(zhuǎn)90°的圖形△A2 O B3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】窗戶的形狀如圖所示(圖中長度單位:cm),其上部是半圓形,下部是邊長相同的四個(gè)小正方形,已知下部小正方形的邊長是acm,計(jì)算:
(1)窗戶的面積;
(2)窗戶的外框的總長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張正方形紙片,剪成四個(gè)大小形狀一樣的小正方形,然后將其中的一個(gè)小正方形再按同樣的方法剪成四個(gè)小正方形,再將其中的一個(gè)小正方形剪成四個(gè)小正方形,如此循環(huán)進(jìn)行下去;
(1)填表:
剪的次數(shù) | 1 | 2 | 3 | 4 | 5 |
正方形個(gè)數(shù) |
(2)如果剪n次,共剪出多少個(gè)小正方形?
(3)如果剪了100次,共剪出多少個(gè)小正方形?
(4)觀察圖形,剪了n次,小正方形的邊長為原來的 ,面積是原來的 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點(diǎn)A(﹣3,0)和點(diǎn)B,交y軸于點(diǎn)C(0,3).
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)P在拋物線上,且S△AOP=4SBOC,求點(diǎn)P的坐標(biāo);
(3)如圖b,設(shè)點(diǎn)Q是線段AC上的一動(dòng)點(diǎn),作DQ⊥x軸,交拋物線于點(diǎn)D,求線段DQ長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖山坡上有一根旗桿AB,旗桿底部B點(diǎn)到山腳C點(diǎn)的距離BC為米,斜坡BC的坡度i=1: .小明在山腳的平地F處測量旗桿的高,點(diǎn)C到測角儀EF的水平距離CF=1米,從E處測得旗桿頂部A的仰角為45°,旗桿底部B的仰角為20°.
(1)求坡角∠BCD;
(2)求旗桿AB的高度.
(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖A在數(shù)軸上對應(yīng)的數(shù)為-2.
(1)點(diǎn)B在點(diǎn)A右邊距離A點(diǎn)4個(gè)單位長度,則點(diǎn)B所對應(yīng)的數(shù)是_____.
(2)在(1)的條件下,點(diǎn)A以每秒2個(gè)單位長度沿?cái)?shù)軸向左運(yùn)動(dòng),點(diǎn)B以每秒3個(gè)單位長度沿?cái)?shù)軸向右運(yùn)動(dòng).現(xiàn)兩點(diǎn)同時(shí)運(yùn)動(dòng),當(dāng)點(diǎn)A運(yùn)動(dòng)到-6的點(diǎn)處時(shí),求A、B兩點(diǎn)間的距離.
(3)在(2)的條件下,現(xiàn)A點(diǎn)靜止不動(dòng),B點(diǎn)以原速沿?cái)?shù)軸向左運(yùn)動(dòng),經(jīng)過多長時(shí)間A、B兩點(diǎn)相距4個(gè)單位長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,AD為等腰直角△ABC的高,點(diǎn)A和點(diǎn)C分別在正方形DEFG的邊DG和DE上,連接BG、AE.
(1)求證:BG=AE;
(2)將正方形DEFG繞點(diǎn)D旋轉(zhuǎn),當(dāng)線段EG經(jīng)過點(diǎn)A時(shí),(如圖②所示)
①求證:BG⊥GE;
②設(shè)DG與AB交于點(diǎn)M,若AG=6,AE=8,求DM的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com