反比例函數(shù)y=的圖象上有一點P(m,n),其坐標(biāo)是關(guān)于t的一元二次方程t2-3t+k=0的兩根,且點P到原點的距離為,則該反比例函數(shù)的關(guān)系式為   
【答案】分析:根據(jù)一元二次方程根與系數(shù)的關(guān)系和點到原點的距離公式得到關(guān)于m,n的方程組;根據(jù)方程組,求得mn的值,進一步寫出函數(shù)解析式.
解答:解:∵m、n是方程t2-3t+k=0的兩根,
∴m+n=3…(1).
∵點P到原點的距離為,
=…(2).
把(1)兩邊平方得,m2+2mn+n2=9…(3),
把(2)兩邊平方得,m2+n2=13…(4),
(3)-(4)得,2mn=-4,
mn=-2.
∴反比例函數(shù)的關(guān)系式為y=-
點評:本題比較復(fù)雜,把反比例函數(shù)y=的圖象、一元二次方程、兩點之間距離公式相結(jié)合,考查了學(xué)生對所學(xué)知識的綜合運用能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•邯鄲一模)如圖,在直角坐標(biāo)系中,正方形OABC是由四個邊長為1的小正方形組成的,反比例函數(shù)y1=
k1
x
(x>0)
過正方形OABC的中心E,反比例函數(shù)y2=
k2
x
(x>0)
過AB的中點D,兩個函數(shù)分別交BC于點N,M,有下列四個結(jié)論:
①雙曲線y1的解析式為y1=
1
x
(x>0)

②兩個函數(shù)圖象在第一象限內(nèi)一定會有交點;
③MC=2NC;
④反比例函數(shù)y2的圖象可以是看成是由反比例函數(shù)y1的圖象向上平移一個單位得到
其中正確的結(jié)論是( �。�

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,反比例函數(shù)y1的圖象與一次函數(shù)y2的圖象交于A,B兩點,y2的圖象與x軸交于點C,過A作AD⊥x軸于D,若OA=
5
,AD=
1
2
OD,點B的橫坐標(biāo)為
1
2

(1)求一次函數(shù)的解析式及△AOB的面積.
(2)結(jié)合圖象直接寫出:當(dāng)y1>y2時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知函數(shù)y1=-
1
3
x2和反比例函數(shù)y2的圖象有一個交點是A(
a
,-1).
(1)求函數(shù)y2的解析式;
(2)在同一直角坐標(biāo)系中,畫出函數(shù)y1和y2的圖象草圖;
(3)借助圖象回答:當(dāng)自變量x在什么范圍內(nèi)取值時,對于x的同一個值,都有y1<y2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第5章《反比例函數(shù)》�?碱}集(12):5.2 反比例函數(shù)的圖象與性質(zhì)(解析版) 題型:解答題

如圖,已知A(-4,n),B(2,-4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求直線AB與x軸的交點C的坐標(biāo)及△AOB的面積;
(3)求方程kx+b-=0的解(請直接寫出答案);
(4)求不等式kx+b-<0的解集(請直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第5章《反比例函數(shù)》中考題集(08):5.2 反比例函數(shù)的圖象與性質(zhì)(解析版) 題型:選擇題

若點(3,4)是反比例函數(shù)y=的圖象上一點,則此函數(shù)圖象必經(jīng)過點( )
A.(2,6)
B.(-2.6)
C.(4,-3)
D.(3,-4)

查看答案和解析>>

同步練習(xí)冊答案
关 闭