精英家教網 > 初中數學 > 題目詳情

【題目】先化簡再求值:(a-2)2-(a-1)·(a+1)+5a,其中a=-2.

【答案】3

【解析】

試題首先利用完全平方公式和平方差公式去掉括號,然后合并同類項,最后代入數值計算即可求解.

試題解析:原式=a2-4a+4-a2+1+5a=a+5,

a=-2代入,得原式=a+5=-2+5=3.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】一個正方體有個面.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若|y﹣5|+(x+2)2=0,則xy的值為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】m4﹣2m2+1.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某公司投資新建了一商場,共有商鋪30.據預測,當每間的年租金定為10萬元時,可全部租出.每間的年租金每增加5 000,少租出商鋪1.該公司要為租出的商鋪每間每年交各種費用1萬元,未租出的商鋪每間每年交各種費用5 000.

1)當每間商鋪的年租金定為13萬元時,能租出多少間?

2)當每間商鋪的年租金定為多少萬元時,該公司的年收益(收益=租金-各種費用)為275萬元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABC中,AB10,AC2BC邊上的高AD6,則另一邊BC等于_______

【答案】106

【解析】試題解析:根據題意畫出圖形,如圖所示,

如圖1所示,AB=10,AC=2,AD=6,

在RtABD和RtACD中,

根據勾股定理得:BD==8,CD==2,

此時BC=BD+CD=8+2=10;

如圖2所示,AB=10,AC=2,AD=6,

在RtABD和RtACD中,

根據勾股定理得:BD==8,CD==2,

此時BC=BD-CD=8-2=6,

BC的長為6或10.

型】填空
束】
12

【題目】在平面直角坐標系中,已知一次函數y=2x+1的圖象經過P1(x1,y1)、P2(x2,y2)兩點,若x1<x2,則y1 ______ y2.(填“>”“<”或“=”)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy 中,反比例函數的圖象與一次函數y2axb的圖象交于點A1,3)和B(-3,m).

1)求反比例函數和一次函數y2axb的表達式;

2)點C 是坐標平面內一點,BCx 軸,ADBC 交直線BC 于點D,連接AC.若AC=CD,求點C的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2(a-1)2-12(a-1)+18

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下列材料:

問題:已知方程x2+x﹣1=0,求一個一元二次方程,使它的根分別是已知方程根的2倍.

解:設所求方程的根為y,則y=2x,所以x=,把x=,代入已知方程,

得(2 +﹣1=0.

化簡,得y2+2y﹣4=0,

故所求方程為y2+2y﹣4=0

這種利用方程根的代換求新方程的方法,我們稱為換根法”.

請用閱讀材料提供的換根法求新方程(要求:把所求方程化為一般形式):

(1)已知方程x2+2x﹣1=0,求一個一元二次方程,使它的根分別是已知方程根的相反數,則所求方程為 ;

(2)已知關于x的一元二次方程ax2+bx+c=0(a≠0)有兩個不等于零的實數根,求一個一元二次方程,使它的根分別是已知方程根的倒數.

查看答案和解析>>

同步練習冊答案