【題目】如圖,直線y=﹣3x+3與x軸、y軸分別交于A,B兩點,拋物線y=﹣x2+bx+c與直線y=c分別交y軸的正半軸于點C和第一象限的點P,連接PB,得△PCB≌△BOA(O為坐標原點).若拋物線與x軸正半軸交點為點F,設(shè)M是點C,F(xiàn)間拋物線上的一點(包括端點),其橫坐標為m.
(1)直接寫出點P的坐標和拋物線的解析式;
(2)當m為何值時,△MAB面積S取得最小值和最大值?請說明理由;
(3)求滿足∠MPO=∠POA的點M的坐標.
【答案】(1)點P的坐標為(3,4),拋物線的解析式為y=﹣x2+3x+4;(2)當m=0時,S取最小值,最小值為;當m=3時,S取最大值,最大值為5.(3)滿足∠MPO=∠POA的點M的坐標為(0,4)或(,).
【解析】(1)代入y=c可求出點C、P的坐標,利用一次函數(shù)圖象上點的坐標特征可求出點A、B的坐標,再由△PCB≌△BOA即可得出b、c的值,進而可得出點P的坐標及拋物線的解析式;
(2)利用二次函數(shù)圖象上點的坐標特征求出點F的坐標,過點M作ME∥y軸,交直線AB于點E,由點M的橫坐標可得出點M、E的坐標,進而可得出ME的長度,再利用三角形的面積公式可找出S=﹣(m﹣3)2+5,由m的取值范圍結(jié)合二次函數(shù)的性質(zhì)即可求出S的最大值及最小值;
(3)分兩種情況考慮:①當點M在線段OP上方時,由CP∥x軸利用平行線的性質(zhì)可得出:當點C、M重合時,∠MPO=∠POA,由此可找出點M的坐標;②當點M在線段OP下方時,在x正半軸取點D,連接DP,使得DO=DP,此時∠DPO=∠POA,設(shè)點D的坐標為(n,0),則DO=n,DP=,由DO=DP可求出n的值,進而可得出點D的坐標,由點P、D的坐標利用待定系數(shù)法即可求出直線PD的解析式,再聯(lián)立直線PD及拋物線的解析式成方程組,通過解方程組求出點M的坐標.綜上此題得解.
(1)當y=c時,有c=﹣x2+bx+c,
解得:x1=0,x2=b,
∴點C的坐標為(0,c),點P的坐標為(b,c),
∵直線y=﹣3x+3與x軸、y軸分別交于A、B兩點,
∴點A的坐標為(1,0),點B的坐標為(0,3),
∴OB=3,OA=1,BC=c﹣3,CP=b,
∵△PCB≌△BOA,
∴BC=OA,CP=OB,
∴b=3,c=4,
∴點P的坐標為(3,4),拋物線的解析式為y=﹣x2+3x+4;
(2)當y=0時,有﹣x2+3x+4=0,
解得:x1=﹣1,x2=4,
∴點F的坐標為(4,0),
過點M作ME∥y軸,交直線AB于點E,如圖1所示,
∵點M的橫坐標為m(0≤m≤4),
∴點M的坐標為(m,﹣m2+3m+4),點E的坐標為(m,﹣3m+3),
∴ME=﹣m2+3m+4﹣(﹣3m+3)=﹣m2+6m+1,
∴S=OAME=﹣m2+3m+=﹣(m﹣3)2+5,
∵﹣<0,0≤m≤4,
∴當m=0時,S取最小值,最小值為;當m=3時,S取最大值,最大值為5;
(3)①當點M在線段OP上方時,∵CP∥x軸,
∴當點C、M重合時,∠MPO=∠POA,
∴點M的坐標為(0,4);
②當點M在線段OP下方時,在x正半軸取點D,連接DP,使得DO=DP,此時∠DPO=∠POA,
設(shè)點D的坐標為(n,0),則DO=n,DP=,
∴n2=(n﹣3)2+16,
解得:n=,
∴點D的坐標為(,0),
設(shè)直線PD的解析式為y=kx+a(k≠0),
將P(3,4)、D(,0)代入y=kx+a,
,解得:,
∴直線PD的解析式為y=﹣x+,
聯(lián)立直線PD及拋物線的解析式成方程組,得:,
解得:,.
∴點M的坐標為(,).
綜上所述:滿足∠MPO=∠POA的點M的坐標為(0,4)或(,).
科目:初中數(shù)學 來源: 題型:
【題目】(1)在下列橫線上用含有a,b的代數(shù)式表示相應(yīng)圖形的面積.
① ; ② ; ③ ; ④ .
(2)通過拼圖,你發(fā)現(xiàn)前三個圖形的面積與第四個圖形面積之間有什么關(guān)系?請用數(shù)學式子表示: ;
(3)利用(2)的結(jié)論計算992+2×99×1+1的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,BD,CE分別是,平分線,BD,CE相交于點P.
如圖1,如果,則______;
如圖2,如果,不是直角,請問在中所得的結(jié)論是否仍然成立?若成立,請證明:若不成立,請說明理由.
小月同學在完成之后,發(fā)現(xiàn)CD、BE、BC三者之間存在著一定的數(shù)量關(guān)系,于是她在邊CB上截取了,連接PF,可證≌,請你寫出小月同學發(fā)現(xiàn),并完成她的說理過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,小明有5張寫著不同數(shù)字的卡片,請你按要求抽出卡片,完成下列各題:
(1)若從中抽出2張卡片,且這2個數(shù)字的差最小,應(yīng)如何抽?最小值是多少?
(2)若從中抽出2張卡片,且這2個數(shù)字的積最大,應(yīng)如何抽。孔钚≈凳嵌嗌?
(3)若從中抽出4張卡片,運用加、減、乘、除、乘方、括號等運算符號,使得結(jié)果為24.請寫出運算式.(只需寫出一種)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠A=65°,∠B=75°,將紙片的一角折疊,使點C落在△ABC外,若∠2=18°,則∠1的度數(shù)為( 。
A. 50°B. 98°C. 75°D. 80°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四個結(jié)論①AH⊥EF,②∠ABF=∠EFB,③AC∥BE,④∠E=∠ABE.正確的是( )
A. ①②③④ B. ①② C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,∠B=∠C,點D為AB的中點.
(1)如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.
①若點Q的運動速度與點P的運動速度相等,經(jīng)過1s后,△BPD與△CQP是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為時________cm/s,在運動過程中能夠使△BPD與△CQP全等.(直接填答案)
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,求經(jīng)過多長時間點P與點Q第一次在△ABC的哪條邊上相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)下面的研究彈簧長度與所掛物體重量關(guān)系的實驗表格,不掛物體時,彈簧原長_____cm;當所掛物體重量為3.5kg時,彈簧比原來伸長_____cm.
所掛物體重量x(kg) | 1 | 3 | 4 | 5 |
彈簧長度y(cm) | 10 | 14 | 16 | 18 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com