【題目】如圖,AB為⊙O的直徑,CD⊥AB于點(diǎn)G,E是CD上一點(diǎn),且BE=DE,延長(zhǎng)EB至點(diǎn)P,連結(jié)CP,使PC=PE,延長(zhǎng)BE與⊙O交于點(diǎn)F,連結(jié)BD,F(xiàn)D.
(1)求證:CD=BF;
(2)求證:PC是⊙O的切線;
(3)若tanF=,AG﹣BG=,求ED的值.
【答案】(1)證明見(jiàn)解析(2)證明見(jiàn)解析(3)
【解析】
(1)連接,由于,,,從而得證;
(2)連接,由于,,從而可得,又因?yàn)?/span>,從而可知,由于,,所以,從而得證;
(3)連接,易證,所以,即,從而可求出的長(zhǎng)度,再由勾股定理可知的長(zhǎng)度,由于,,所以,,,從而可求出的值.
(1)連接BC,
∵BE=DE,
∴∠BDE=∠DBE,
在△BCD與△DFB中,
∴△BCD≌△DFB(AAS)
∴CD=BF
(2)連接OC,
∵∠COB=2∠CDB,∠CEB=∠CDB+∠DBE=2∠CDB
∴∠COB=∠CEB,
∵PC=PE,
∴∠COB=∠CEB=∠PCE,
∵AB⊥CD,
∴∠COB+∠OCG=90°,
∴∠PCE+∠OCG=∠PCO=90°,
∴OC⊥CP
∵OC是半徑,
∴PC是⊙O的切線,
(3)連接AD,
∵AB是直徑,
∴∠ADB=90°,
∵AB⊥CD,
∴=,
∴∠BDG=∠A=∠F
∵tan∠F=
∴tan∠A==,即AG=GD
同理可得:BG=GD,
∴AG﹣BG=GD﹣GD=,
解得:GD=2,
∴CD=2GD=4,
∴BG=
∴由勾股定理可知:BD=
∵∠BCD=∠EDB,∠BDC=∠EBD,
∴△BCD∽△EDB
∴=
∵BC=BD,
∴ED===
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB、BC、AC三邊的長(zhǎng)分別為, , ,求這個(gè)三角形的面積.小明同學(xué)在解答這道題時(shí),先畫一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.
(1)△ABC的面積為 .
(2)若△DEF的三邊DE、EF、DF長(zhǎng)分別為, , ,請(qǐng)?jiān)趫D2的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并求出△DEF的面積為 .
(3)在△ABC中,AB=2,AC=4,BC=2,以AB為邊向△ABC外作△ABD(D與C在AB異側(cè)),使△ABD為等腰直角三角形,則線段CD的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠ECF=∠BCD=90°,CE=CF=5,BC=7,BD平分∠ABC,E是△BCD內(nèi)一點(diǎn),F是四邊形ABCD外一點(diǎn).(E可以在△BCD的邊上)
(1)求證:DC=BC;
(2)當(dāng)∠BEC=135°,設(shè)BE=a,DE=b,求a與b滿足的關(guān)系式;
(3)當(dāng)E落在線段BD上時(shí),求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為緩解交通擁堵,某區(qū)擬計(jì)劃修建一地下通道,該通道一部分的截面如圖所示(圖中地面AD與通道BC平行,通道水平寬度BC為8米,∠BCD=135°,通道斜面CD的長(zhǎng)為6米,通道斜面AB的坡度i=1:.
(1)求通道斜面AB的長(zhǎng);
(2)為增加市民行走的舒適度,擬將設(shè)計(jì)圖中的通道斜面CD的坡度變緩,修改后的通道斜面DE的坡角為30°,求此時(shí)BE的長(zhǎng).
(答案均精確到0.1米,參考數(shù)據(jù):≈1.41,≈2.24,≈2.45)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)請(qǐng)畫出△ABC關(guān)于y軸對(duì)稱的△A′B′C′(其中A′,B′,C′分別是A,B,C的對(duì)應(yīng)點(diǎn),不寫畫法);
(2)直接寫出A′,B′,C′三點(diǎn)的坐標(biāo):A′( ),B′( ),C′( )
(3)計(jì)算△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,≌,≌,B,E,C在一條直線上下列結(jié)論:是的平分線;;;線段DE是的中線;其中正確的有 ()個(gè).
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.
(1)如圖1,DE⊥AB,DF⊥AC,垂足分別為點(diǎn)E,F(xiàn),求證:AE+AF=AD
(2)如圖2,如果∠EDF=60,且∠EDF兩邊分別交邊AB,AC于點(diǎn)E,F(xiàn),那么線段AE,AF,AD之間有怎樣的數(shù)量關(guān)系?并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個(gè)相等的實(shí)數(shù)根,下列判斷正確的是( 。
A. 1一定不是關(guān)于x的方程x2+bx+a=0的根
B. 0一定不是關(guān)于x的方程x2+bx+a=0的根
C. 1和﹣1都是關(guān)于x的方程x2+bx+a=0的根
D. 1和﹣1不都是關(guān)于x的方程x2+bx+a=0的根
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com