如圖,在平面直角坐標(biāo)系中,等腰直角三角形OMN的斜邊ON在x軸上,頂點(diǎn)M的坐標(biāo)為(3,3),MH為斜邊上的高.過N點(diǎn)垂直于x軸的直線與拋物線y=" -" 4x點(diǎn)D.直線OD的解析式為,點(diǎn)P(x,o)是x軸上一動點(diǎn),過點(diǎn)P作y軸的平行線,交射線OM與點(diǎn)E.

【小題1】直接寫出點(diǎn)D的坐標(biāo)及n的值
【小題2】判斷拋物線的頂點(diǎn)是否在直線OM上?并說明理由
【小題3】設(shè)以M、E、H、N為頂點(diǎn)的四邊形的面積為S.當(dāng)x≠3[時,求S與x的函數(shù)關(guān)系式.

【小題1】D(6,3),n=2.      ………………4分
【小題2】設(shè)直線OM的解析式為y="kx," k≠0.
∵M(jìn)(3,3)在直線OM上,
∴k=1.
即直線OM的解析式為:y="x."
的頂點(diǎn)坐標(biāo)為(4,4),
∴拋物線的頂點(diǎn)在直線OM上.  …………………7分
【小題3】∵點(diǎn)E在OM上,
PE⊥x軸,
∴EP=x
∴當(dāng)時,S==.
當(dāng)時,  …………11分解析:
(1)根據(jù)勾股定理和M的坐標(biāo)即可求出D的坐標(biāo)和n的值;
(2)設(shè)直線OM的解析式為y=kx,k≠0,根據(jù)M(3,3)在直線OM上,得到y(tǒng)=x.求出y="-" x2+2x的頂點(diǎn)坐標(biāo)代入即可;
(3)已知了M點(diǎn)的坐標(biāo),即可求出OH、MH的長,由于△OHM是等腰直角三角形,即可確定ON的長;欲求四邊形MNHE的面積,需要分成兩種情況考慮:
①0<m<3時,②6>m>3時,③m>6時,根據(jù)上述3種情況陰影部分的面積計(jì)算方法,可求出不同的自變量取值范圍內(nèi),S、m的函數(shù)關(guān)系式;
(4)根據(jù)等腰直角三角形和等腰三角形的性質(zhì),即可求出m的范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個動點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點(diǎn)C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案