【題目】在四邊形ABCD中,對角線相交于點(diǎn)O;E、F、G、H分別是AD、BD、 BC、AC的中點(diǎn).
(1)說明四邊形EFGH是平行四邊形;
(2)當(dāng)四邊形ABCD滿足一個(gè)什么條件時(shí),四邊形EFGH是菱形?并說明理由.
【答案】
(1)解:∵E、F分別是AD,BD的中點(diǎn),G、H分別中BC,AC的中點(diǎn),∴EF∥AB, ,GH ∥AB, ,∴EF∥GH, ,∴四邊形EFGH是平行四邊形
(2)當(dāng) 時(shí),四邊形EFGH是菱形
【解析】(1)三角形的中位線平行于第三邊,并且等于第三邊的一半。根據(jù)這個(gè)定理可得EF∥GH, E F = G H ,再由有一組對邊平行且相等的四邊形是平行四邊形可得四邊形EFGH是平行四邊形。
(2)當(dāng)AB=CD時(shí),四邊形EFGH是菱形。根據(jù)中位線定理可知E F =AB,EH=CD,而AB=CD,所以EF=EH,根據(jù)有一組鄰邊相等的平行四邊形是菱形可得四邊形EFGH是菱形。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列變形是因式分解的是( 。
A.6x2y2=3xy2xy
B.a2﹣4ab+4b2=(a﹣2b)2
C.(x+2)(x+1)=x2+3x+2
D.x2﹣9﹣6x=(x+3)(x﹣3)﹣6x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的有( )
①過兩點(diǎn)只能畫一條直線,②過兩點(diǎn)只能畫一條射線,③過兩點(diǎn)只能畫一條線段
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 0個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若∠AOB=∠ACB=90°,OC平分∠AOB.
(1)你能將四邊形AOBC通過剪裁拼成一個(gè)正方形嗎?畫出裁剪方法并有必要的說明。
(2)若OC=2,你能求出四邊形AOBC的面積嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地相距135千米,大小兩輛汽車從甲地開往乙地,大汽車比小汽車早出發(fā)4小時(shí),小汽車比大汽車早到30分鐘,小汽車和大汽車的速度之比為5∶2,求兩車的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是拋物線y=ax2+bx+c(a≠0)圖象的一部分,已知拋物線的對稱軸為x=2,與x軸的一個(gè)交點(diǎn)是(﹣1,0).下列結(jié)論:
①ac<0;②4a﹣2b+c>0;③拋物線與x軸的另一個(gè)交點(diǎn)是(4,0);
④點(diǎn)(﹣3,y1),(6,y2)都在拋物線上,則有y1<y2.其中正確的個(gè)數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=1,AD=,AF平分∠DAB,過C點(diǎn)作CEBD于E,延長AF、EC交于點(diǎn)H,下列結(jié)論中:①AF=FH;②B0=BF;③CA=CH;④BE=3ED;正確的個(gè)數(shù)為( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸相交于A、B兩點(diǎn),點(diǎn)B的坐標(biāo)為(3,0),與y軸相交于點(diǎn)C(0,﹣3),頂點(diǎn)為D.
(1)求出拋物線y=x2+bx+c的表達(dá)式;
(2)連結(jié)BC,與拋物線的對稱軸交于點(diǎn)E,點(diǎn)P為線段BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PF∥DE交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m.
①當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形.
②設(shè)四邊形OBFC的面積為S,求S的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com