如圖,已知拋物線軸交于A、B兩點(diǎn),與軸交于點(diǎn)C.
【小題1】求A、B、C三點(diǎn)的坐標(biāo).
【小題2】過點(diǎn)A作AP∥CB交拋物線于點(diǎn)P,求四邊形ACBP的面積.
【小題3】在軸上方的拋物線上是否存在一點(diǎn)M,過M作MG軸于點(diǎn)G,使以A、M、G三點(diǎn)為頂點(diǎn)的三角形與PCA相似.若存在,直接寫出所有滿足要求的M點(diǎn)的坐標(biāo);否則,請說明理由.


【小題1】令,得  解得
,得
∴ A   B   C  ..................................3分
【小題1】∵OA=OB=OC=   ∴BAC=ACO=BCO=
∵AP∥CB,       ∴PAB=

過點(diǎn)P作PE軸于E,則APE為等腰直角三角形
令OE=,則PE= ∴P
∵點(diǎn)P在拋物線上 ∴ 
解得(不合題意,舍去)
∴PE=
∴四邊形ACBP的面積=AB•OC+AB•PE=
【小題1】滿足要求的M點(diǎn)有三個,(-2,0)、(,0)、(4,0).

解析【小題1】拋物線與x軸的交點(diǎn),即當(dāng)y=0,C點(diǎn)坐標(biāo)即當(dāng)x=0,分別令y以及x為0求出A,B,C坐標(biāo)的值;
【小題1】四邊形ACBP的面積=△ABC+△ABP,由A,B,C三點(diǎn)的坐標(biāo),可知△ABC是直角三角形,且AC=BC,則可求出△ABC的面積,根據(jù)已知可求出P點(diǎn)坐標(biāo),可知AP的長度,以及點(diǎn)B到直線的距離,從而求出△ABP的面積,則就求出四邊形ACBP的面積;
【小題1】假設(shè)存在這樣的點(diǎn)M,兩個三角形相似,根據(jù)題意以及上兩題可知,∠PAC∠和∠MGA是直角,只需證明即可.設(shè)M點(diǎn)坐標(biāo),根據(jù)題中所給條件可求出線段AG,CA,MG,CA的長度,然后列等式,分情況討論,求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與軸交于點(diǎn),,與軸交于點(diǎn)

(1)求拋物線的解析式及其頂點(diǎn)的坐標(biāo);
(2)設(shè)直線軸于點(diǎn).在線段的垂直平分線上是否存在點(diǎn),使得點(diǎn)到直線的距離等于點(diǎn)到原點(diǎn)的距離?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,請說明理由;
(3)過點(diǎn)軸的垂線,交直線于點(diǎn),將拋物線沿其對稱軸平移,使拋物線與線段總有公共點(diǎn).試探究:拋物線向上最多可平移多少個單位長度?向下最多可平移多少個單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知拋物線軸的兩個交點(diǎn)為A、B,與軸交于點(diǎn)C

(1)求A、B、C三點(diǎn)的坐標(biāo)?
(2)用配方法求該二次函數(shù)的對稱軸和頂點(diǎn)坐標(biāo)?
(3)若坐標(biāo)平面內(nèi)的點(diǎn)M,使得以點(diǎn)M和三點(diǎn)A、B、C為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)M的坐標(biāo)?(直接寫出M的坐標(biāo),不用說明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年陜西省西安音樂學(xué)院初一上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

如圖,已知拋物線與軸交于點(diǎn),,與y軸交于點(diǎn)

(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
(2)設(shè)直線CD交軸于點(diǎn)E.在線段OB的垂直平分線上是否存在點(diǎn)P,使得點(diǎn)P到直線CD的距離等于點(diǎn)P到原點(diǎn)O的距離?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年陜西省西安音樂學(xué)院初一上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

如圖,已知拋物線與軸交于點(diǎn),與y軸交于點(diǎn)

(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);

(2)設(shè)直線CD交軸于點(diǎn)E.在線段OB的垂直平分線上是否存在點(diǎn)P,使得點(diǎn)P到直線CD的距離等于點(diǎn)P到原點(diǎn)O的距離?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請說明理由

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省黃岡市初二上學(xué)期期末數(shù)學(xué)卷 題型:解答題

 

如圖,已知拋物線軸的兩個交點(diǎn)為A、B,與軸交于點(diǎn)C

(1)求A、B、C三點(diǎn)的坐標(biāo)?

(2)用配方法求該二次函數(shù)的對稱軸和頂點(diǎn)坐標(biāo)?

(3)若坐標(biāo)平面內(nèi)的點(diǎn)M,使得以點(diǎn)M和三點(diǎn)A、B、C為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)M的坐標(biāo)?(直接寫出M的坐標(biāo),不用說明)

 

查看答案和解析>>

同步練習(xí)冊答案