【題目】如圖,有一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤被平均分成4個扇形,分別標(biāo)有12、34四個數(shù)字,小王和小李各轉(zhuǎn)動一次轉(zhuǎn)盤為一次游戲.當(dāng)每次轉(zhuǎn)盤停止后,指針?biāo)干刃蝺?nèi)的數(shù)為各自所得的數(shù),一次游戲結(jié)束得到一組數(shù)(若指針指在分界線時重轉(zhuǎn)).(1)請你用樹狀圖或列表的方法表示出每次游戲可能出現(xiàn)的所有結(jié)果;(2)求每次游戲結(jié)束得到的一組數(shù)恰好是方程x24x+30的解的概率.

【答案】(1)見解析;(2).

【解析】

1)列表得出所有等可能的情況數(shù)即可;

2)找出恰好是方程x23x+2=0的解的情況數(shù),求出所求的概率即可.

1)列表如下:

2)所有等可能的情況有16種,其中是方程x24x+3=0的解的有(1,3),(3,1)共2種,則P(是方程解)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑AB=10CD是⊙O的弦,ACBD相交于點P

1)設(shè)∠BPC=α,如果sinα是方程5x2-13x6=0的根,求cosα的值;

2)在(1)的條件下,求弦CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作出反比例函數(shù)y=-的圖象,并結(jié)合圖象回答:(1)當(dāng)x2時,y的值;(2)當(dāng)1x≤4時,y的取值范圍;(3)當(dāng)1≤y4時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售一種成本為20元的商品,經(jīng)調(diào)研,當(dāng)該商品每件售價為30元時,每天可銷售200件:當(dāng)每件的售價每增加1元,每天的銷量將減少5件.

求銷量與售價之間的函數(shù)表達式;

如果每天的銷量不低于150件,那么,當(dāng)售價為多少元時,每天獲取的利潤最大,最大利潤是多少?

該商店老板熱心公益事業(yè),決定從每天的銷售利潤中捐出100元給希望工程,為保證捐款后每天剩余利潤不低于2900元,請直接寫出該商品售價的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,以AB為直徑的OAC邊于點D,過點CCPAB,CP上截取CF=CD連接BF

(1)求證:直線BFO的切線;

(2)AB=5,BC=,求線段CDBF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)ab都是常數(shù),且a<0)的圖像與x軸交于點、,頂點為點C.

1)求這個二次函數(shù)的解析式及點C的坐標(biāo);

2)過點B的直線交拋物線的對稱軸于點D,聯(lián)結(jié)BC,求∠CBD的余切值;

3)點P為拋物線上一個動點,當(dāng)∠PBA=CBD時,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一農(nóng)戶要建一個矩形鴨舍,鴨舍的一邊利用長為13m的住房墻,另外三邊用27m長的建筑材料圍成,為方便進出,在垂直于住房墻的一邊留一個1m寬的門所圍矩形鴨舍的長、寬分別為多少時,鴨舍面積為?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCA1B1C1是位似圖形.

(1)在網(wǎng)格上建立平面直角坐標(biāo)系,使得點A的坐標(biāo)為(﹣6,﹣1),點C1的坐標(biāo)為(﹣3,2),則點B的坐標(biāo)為   ;

(2)以點A為位似中心,在網(wǎng)格圖中作AB2C2,使AB2C2ABC位似,且位似比為1:2;

(3)在圖上標(biāo)出ABCA1B1C1的位似中心P,并寫出點P的坐標(biāo)為   ,計算四邊形ABCP的周長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB6,BC8.動點P從點A出發(fā)沿AC向終點C運動,同時動點Q從點B出發(fā)沿BA向點A運動,到達A點時停止運動.點P也同時停止.點PQ運動速度均為每秒1個單位長度,連接PQ,設(shè)運動時間為t(t0)秒.

(1)當(dāng)點QB點向A點運動時(未到達A),

①當(dāng)t_____PQBC

②求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;

(2)伴隨著P,Q兩點的運動,線段PQ的垂直平分線為l

①當(dāng)l經(jīng)過點A時,射線QPAD于點E,求此時的t的值和AE的長;

②當(dāng)l經(jīng)過點B時,求t的值.

查看答案和解析>>

同步練習(xí)冊答案