【題目】觀察下列計算過程,發(fā)現規(guī)律,利用規(guī)律猜想并計算:
1+2==3;1+2+3==6,1+2+3+4==10;1+2+3+4+5==15;…
(1)猜想:1+2+3+4+…+n= .
(2)利用上述規(guī)律計算:1+2+3+4+…+200;
(3)嘗試計算:3+6+9+12+…3n的結果.
科目:初中數學 來源: 題型:
【題目】小明在光明廣場(點O)繪制了市內幾所學校相對于廣場的位置簡圖(圖11中1 cm表示5 km).東方紅中學在廣場的正南方向,測得OA=1.7 cm,OB=2 cm,OC=2 cm,OD=1.4 cm,∠AOC=123°18′,∠AOB=68°24′,∠AOD=88°28′,如何確定每個學校的具體位置?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在方格紙中(小正方形的邊長為1),△ABC的三個頂點均為格點,將△ABC沿x軸向左平移5個單位長度,根據所給的直角坐標系(O是坐標原點),解答下列問題:
(1)畫出平移后的△A′B′C′,并直接寫出點A′、B′、C′的坐標;
(2)求出在整個平移過程中,△ABC掃過的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知n邊形的內角和θ=(n-2)×180°.
(1)甲同學說,θ能取360°;而乙同學說,θ也能取630°.甲、乙的說法對嗎?若對,求出邊數n.若不對,說明理由;
(2)若n邊形變?yōu)?/span>(n+x)邊形,發(fā)現內角和增加了360°,用列方程的方法確定x.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠ABC=90°,點D是BC邊的中點,分別以B、C為圓心,大于線段BC長度一半的長為半徑作弧,兩弧在直線BC上方的交點為P,直線PD交AC于點E,連接BE.若AB=6,BC=8,則△ABE的周長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平臺AB高為12m,在B處測得樓房CD頂部點D的仰角為45°,底部點C的俯角為30°,求樓房CD的高度(結果保留整數,參考值: ≈1.732)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“五四”期間,小張購進100只兩種型號的文具進行銷售,其進價和售價之間的關系如下表:
型號 | 進價(元/只) | 售價(元/只) |
A型 | 10 | 12 |
B型 | 15 | 23 |
(1)設購進A型文具x只,銷售利潤為w元,求w與x的函數關系式?
(2)要使銷售文具所獲利潤最大,且所獲利潤不超過進貨價格的40%,請你幫小張設計一個進貨方案,并求出其所獲利潤的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知如圖,射線CB∥OA,∠C=∠OAB=100°,E、F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF。
(1)求∠EOB的度數;
(2)若平行移動AB,那么∠OBC∶∠OFC的值是否隨之變化?若變化,找出變化規(guī)律;若不變,求出這個比值;
(3)在平行移動AB的過程中,是否存在某種情況,使∠OEC=∠OBA?若存在,求出其度數;若不存在,說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB與CD相交于點O,OE⊥AB,OF⊥CD,OP是∠BOC的平分線.
(1)請寫出圖中所有∠EOC的補角 ____________________;
(2)如果∠POC:∠EOC=2:5.求∠BOF的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com