如圖二次函數(shù)y=-mx2+4m圖象的頂點(diǎn)坐標(biāo)為(0,2),矩形ABCD的頂點(diǎn)B,C在x軸上,A,D在拋物線上,矩形ABCD在拋物線與x軸所圍成的區(qū)域內(nèi).
(1)求二次函數(shù)的解析式.
(2)設(shè)點(diǎn)A的坐標(biāo)為(x,y),試求矩形ABCD的周長P關(guān)于自變量x的函數(shù)關(guān)系式,并求自變量x的取值范圍.

解:(1)∵二次函數(shù)y=-mx2+4m的頂點(diǎn)坐標(biāo)為(0,2),
∴4m=2,
即m=,
∴拋物線的解析式為:y=-x2+2;

(2)∵A點(diǎn)在x軸的負(fù)方向上坐標(biāo)為(x,y),四邊形ABCD為矩形,BC在x軸上,
∴AD∥x軸,
又因?yàn)閽佄锞關(guān)于y軸對(duì)稱,
所以D、C點(diǎn)關(guān)于y軸分別與A、B對(duì)稱.
所以AD的長為-2x,AB長為y,
所以周長p=2y-4x=2(-x2+2)-4x=-(x+2)2+8.
∵A在拋物線上,且ABCD組成矩形,
∴x<2,
∵四邊形ABCD為矩形,
∴y>0,
即x>-2.
所以p=-(x+2)2+8=-x2-4x+4,其中-2<x<0.
分析:(1)由頂點(diǎn)坐標(biāo)(0,2)可直接代入y=-mx2+4m,求得m=,即可求得拋物線的解析式;
(2)由圖及四邊形ABCD為矩形可知AD∥x軸,長為2x的據(jù)對(duì)值,AB的長為A點(diǎn)的總坐標(biāo),由x與y的關(guān)系,可求得p關(guān)于自變量x的解析式,因?yàn)榫匦蜛BCD在拋物線里面,所以x小于0,大于拋物線與x負(fù)半軸的交點(diǎn).
點(diǎn)評(píng):本題考查了二次函數(shù)與幾何矩形相結(jié)合的應(yīng)用,比較綜合,只要熟練二次函數(shù)的性質(zhì),數(shù)形結(jié)合得出是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖二次函數(shù)y=
12
x2-2x+4
的圖象交y軸于點(diǎn)A,頂點(diǎn)為點(diǎn)B.
(1)判斷點(diǎn)B是否在直線y=x上,并說明理由;
(2)若直線y=kx+1交y軸于點(diǎn)P,交直線AB于點(diǎn)C,若△APC為等腰三角形,求直線y=kx+1的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖二次函數(shù)y=x2+bx+c的圖象經(jīng)過A(-1,0)和B(3,0)兩點(diǎn),且交y軸于點(diǎn)C.
(1)試確定b、c的值;
(2)過點(diǎn)C作CD∥x軸交拋物線于點(diǎn)D,點(diǎn)M為此拋物線的頂點(diǎn),試確定△MCD的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莒南縣一模)已知,如圖二次函數(shù)y=ax2+bx+c(a≠0)的圖象與y軸交于點(diǎn)C(0,4)與x軸交于點(diǎn)A、B,點(diǎn)B(4,0),拋物線的對(duì)稱軸為x=1.直線AD交拋物線于點(diǎn)D(2,m),
(1)求二次函數(shù)的解析式并寫出D點(diǎn)坐標(biāo);
(2)點(diǎn)Q是線段AB上的一動(dòng)點(diǎn),過點(diǎn)Q作QE∥AD交BD于E,連結(jié)DQ,當(dāng)△DQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
(3)拋物線與y軸交于點(diǎn)C,直線AD與y軸交于點(diǎn)F,點(diǎn)M為拋物線對(duì)稱軸上的動(dòng)點(diǎn),點(diǎn)N在x軸上,當(dāng)四邊形CMNF周長取最小值時(shí),求出滿足條件的點(diǎn)M和點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖二次函數(shù)y=ax2+bx+c的頂點(diǎn)在第四象限,且經(jīng)過點(diǎn)(0,-2)、(-1,0),則y=a+b+c的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•密云縣二模)如圖二次函數(shù)y=ax2+bx+c中a>0,b>0,c<0,則它的圖象大致是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案