【題目】如圖,已知二次函數(shù)yax2+bx+c的圖象經(jīng)過(guò)A1,0)、B5,0)、C0,5)三點(diǎn).

1)求這個(gè)二次函數(shù)的解析式;

2)過(guò)點(diǎn)C的直線(xiàn)ykx+b與這個(gè)二次函數(shù)的圖象相交于點(diǎn)E4,m),請(qǐng)求出CBE的面積S的值.

【答案】解:(1二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)A10)、B5,0)、C0,5)三點(diǎn),

∴y=ax-1)(x-5),把C0,5)代入得:5=5a,解得:a=1,

∴y=x-1)(x-5),y=x2-6x+5

二次函數(shù)的解析式是y=x2-6x+5

2∵y= x2-6x+5,當(dāng)x=4時(shí),m=16-24+5=-3,∴E4,-3),

設(shè)直線(xiàn)EC的解析式是y=kx+b, 把E4-3),C05)代入得:,解得:k=-2, b=5

直線(xiàn)EC的解析式是y=-2x+5,

當(dāng)y=0時(shí)0=-2x+5,解得:x=∴M的坐標(biāo)是(,0∴BF=5-=,

∴SCBE=SCBF+SBFE=××5+××3="10"

答:△CBE的面積S的值是10

【解析】

1)根據(jù)二次函數(shù)的圖象經(jīng)過(guò)A1,0)、B5,0)、C05)三點(diǎn),得到y=ax-1)(x-5),把C的坐標(biāo)代入就能求出a的值,即可得出二次函數(shù)的解析式;

2)把E的坐標(biāo)代入拋物線(xiàn)即可求出m的值,設(shè)直線(xiàn)EC的解析式是y=kx+b,把E、C的坐標(biāo)代入就能求出直線(xiàn)EC,求直線(xiàn)ECX軸的交點(diǎn)坐標(biāo),過(guò)EEN⊥X軸于N,根據(jù)點(diǎn)的坐標(biāo)求出△CBM△BME的面積,相加即可得到答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組為測(cè)量一棵古樹(shù)BH和教學(xué)樓CG的高,先在A處用高1.5米的測(cè)角儀測(cè)得古樹(shù)頂端H的仰角∠HDE為45°,此時(shí)教學(xué)樓頂端G恰好在視線(xiàn)DH上,再向前走7米到達(dá)B處,又測(cè)得教學(xué)樓頂端G的仰角∠GEF為60°,點(diǎn)A、B、C三點(diǎn)在同一水平線(xiàn)上.

(1)計(jì)算古樹(shù)BH的高;

(2)計(jì)算教學(xué)樓CG的高.(參考數(shù)據(jù):≈14,≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形AOBC中,OB=4,OA=3.分別以OB,OA所在直線(xiàn)為x軸,y軸,建立如圖1所示的平面直角坐標(biāo)系.FBC邊上一個(gè)動(dòng)點(diǎn)(不與B,C重合),過(guò)點(diǎn)F的反比例函數(shù)y=(k>0)的圖象與邊AC交于點(diǎn)E.

(1)當(dāng)點(diǎn)F運(yùn)動(dòng)到邊BC的中點(diǎn)時(shí),求點(diǎn)E的坐標(biāo);

(2)連接EF,求∠EFC的正切值;

(3)如圖2,將CEF沿EF折疊,點(diǎn)C恰好落在邊OB上的點(diǎn)G處,求此時(shí)反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平行四邊形ABCD中,如圖,對(duì)角線(xiàn)ACBD相交于點(diǎn)O,AC=10,BD=8

1)若ACBD,試求四邊形ABCD的面積;

2)若ACBD的夾角∠AOD=60°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在半⊙O中,AB是直徑,點(diǎn)D⊙O上一點(diǎn),點(diǎn)C的中點(diǎn),CE⊥AB于點(diǎn)E,過(guò)點(diǎn)D的切線(xiàn)交EC的延長(zhǎng)線(xiàn)于點(diǎn)G,連接AD,分別交CE,CB于點(diǎn)P,Q,連接AC,關(guān)于下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點(diǎn)P△ACQ的外心;④AC2=CQCB,其中結(jié)論正確的是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD在平面直角坐標(biāo)系的第一象限內(nèi),BCx軸平行,AB=1,點(diǎn)C的坐標(biāo)為(6,2),EAD的中點(diǎn);反比例函數(shù)y1=(x>0)圖象經(jīng)過(guò)點(diǎn)C和點(diǎn)E,過(guò)點(diǎn)B的直線(xiàn)y2=ax+b與反比例函數(shù)圖象交于點(diǎn)F,點(diǎn)F的縱坐標(biāo)為4.

(1)求反比例函數(shù)的解析式和點(diǎn)E的坐標(biāo);

(2)求直線(xiàn)BF的解析式;

(3)直接寫(xiě)出y1>y2時(shí),自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠(chǎng)家生產(chǎn)一種新型電子產(chǎn)品,制造時(shí)每件的成本為40元,通過(guò)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量萬(wàn)件與銷(xiāo)售單價(jià)之間符合一次函數(shù)關(guān)系,其圖象如圖所示.

yx的函數(shù)關(guān)系式;

物價(jià)部門(mén)規(guī)定:這種電子產(chǎn)品銷(xiāo)售單價(jià)不得超過(guò)每件80元,那么,當(dāng)銷(xiāo)售單價(jià)x定為每件多少元時(shí),廠(chǎng)家每月獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)戶(hù)承包荒山種植某產(chǎn)品種蜜柚已知該蜜柚的成本價(jià)為8千克,投入市場(chǎng)銷(xiāo)售時(shí),調(diào)查市場(chǎng)行情,發(fā)現(xiàn)該蜜柚銷(xiāo)售不會(huì)虧本,且每天銷(xiāo)量千克與銷(xiāo)售單價(jià)千克之間的函數(shù)關(guān)系如圖所示.

yx的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;

當(dāng)該品種蜜柚定價(jià)為多少時(shí),每天銷(xiāo)售獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y1xx軸交點(diǎn)A恰好是二次函數(shù)y2x軸的其中一個(gè)交點(diǎn),已知二次函數(shù)圖象的對(duì)稱(chēng)軸為x1,并與y軸的交點(diǎn)為D(0,1)

(1)求二次函數(shù)的解析式;

(2)設(shè)該二次函數(shù)與一次函數(shù)的另一個(gè)交點(diǎn)為C點(diǎn),連接DC,求三角形ADC的面積.

(3)根據(jù)圖象,直接寫(xiě)出當(dāng)y1y2時(shí)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案