分析 (1)由旋轉(zhuǎn)的性質(zhì)可知AP=AQ,然后可證明△APQ為等邊三角形,從而可求得PQ的長;
(2)先依據(jù)等邊三角形的性質(zhì)證明△APB≌△AQC,從而得到QC的長,然后依據(jù)勾股定理的逆定理證明△PQC為直角三角形,故此可求得∠AQC的度數(shù),從而得到∠APB的度數(shù).
解答 解:(1)∵AP=AQ,∠PAQ=60°
∴△APQ是等邊三角形,
∴PQ=AP=4.
(2)連接QC.
∵△ABC、△APQ是等邊三角形,
∴∠BAC=∠PAQ=60°,
∴∠BAP=∠CAQ=60°-∠PAC.
在△ABP和△ACQ中$\left\{\begin{array}{l}{AB=AC}\\{∠BAP=∠CAQ}\\{AP=AQ}\end{array}\right.$,
∴△ABP≌△ACQ.
∴BP=CQ=3,∠APB=∠AQC,
∵在△PQC中,PQ2+CQ2=PC2
∴△PQC是直角三角形,且∠PQC=90°
∵△APQ是等邊三角形,
∴∠AQP=60°
∴∠APB=∠AQC=60°+90°=150°.
點評 本題主要考查的是旋轉(zhuǎn)的性質(zhì)、等邊三角形的性質(zhì)、勾股定理的逆定理的應(yīng)用,證得△PQC為直角三角形是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 直角三角形的兩銳角互余 | |
B. | 同位角相等,兩直線平行 | |
C. | 對頂角相等 | |
D. | 直角三角形兩直角邊平方和等于斜邊的平方 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 20$\sqrt{3}$ | B. | 5$\sqrt{3}$cm | C. | $\frac{5}{2}$$\sqrt{3}$cm | D. | 5cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com