【題目】某天下午,出租車司機小李始終在一條南北方向的商業(yè)大道上運營,如果規(guī)定向北為正方向,他記錄的出租車行車里程如下(單位:千米):,,,,,,,
()將最后一名乘客送到目的地時,小李在出車地點的什么方向?距離是多少?
()若出租車每千米耗油量為升,那么這天下午小李的出租車共耗油多少升?
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(0,a),B(0,b),C(m,b)且(a-4)2+ =0,
(1)求C點坐標
(2)作DE DC,交y軸于E點,EF為 AED的平分線,且DFE= 90o。 求證:FD平分ADO;
(3)E 在 y 軸負半軸上運動時,連 EC,點 P 為 AC 延長線上一點,EM 平分∠AEC,且 PM⊥EM,PN⊥x 軸于 N 點,PQ 平分∠APN,交 x 軸于 Q 點,則 E 在運動過程中,的大小是否發(fā)生變化,若不變,求出其值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在ABCD中,E是AD上一點,AE=AB,過點E作直線EF,在EF上取一點G,使得∠EGB=∠EAB,連接AG.
(1)如圖1,當EF與AB相交時,若∠EAB=60°,求證:EG=AG+BG;
(2)如圖2,當EF與AB相交時,若∠EAB=α(0°<α<90°),請你直接寫出線段EG、AG、BG之間的數(shù)量關(guān)系(用含α的式子表示);
(3)如圖3,當EF與CD相交時,且∠EAB=90°,請你寫出線段EG、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知⊙O的半徑為1,PQ是⊙O的直徑,n個相同的正三角形沿PQ排成一列,所有正三角形都關(guān)于PQ對稱,其中第一個△A1B1C1的頂點A1與點P重合,第二個△A2B2C2的頂點A2是B1C1與PQ的交點……最后一個△AnBnCn的頂點Bn,Cn在圓上.
(1)如圖②,當n=1時,求正三角形的邊長a1.
(2)如圖③,當n=2時,求正三角形的邊長a2.
(3)如圖①,求正三角形的邊長an(用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:
某些代數(shù)恒等式可用一些卡片拼成的圖形的面積來解釋.例如,圖①可以解釋,因此,我們可以利用這種方法對某些多項式進行因式分解.
根據(jù)閱讀材料回答下列問題:
(1)如圖②所表示的因式分解的恒等式是________________________.
(2)現(xiàn)有足夠多的正方形和長方形卡片(如圖③),試畫出一個用若干張1號卡片、2號卡片和3號卡片拼成的長方形(每兩張卡片之間既不重疊,也無空隙),使該長方形的面積為,并利用你畫的長方形的面積對進行因式分解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面的統(tǒng)計圖反映了我國2013年到2017年國內(nèi)生產(chǎn)總值情況.(以上數(shù)據(jù)摘自國家統(tǒng)計局《中華人民共和國2017年國民經(jīng)濟和社會發(fā)展統(tǒng)計公報》,其中國內(nèi)生產(chǎn)總值絕對數(shù)按現(xiàn)價計算,增長速度按不變價格計算)
根據(jù)統(tǒng)計圖提供的信息,下列推斷合理的是
A.從2013-2017年,我國國內(nèi)生產(chǎn)總值逐年下降
B.從2013-2017年,我國國內(nèi)生產(chǎn)總值的增長率逐年下降
C.從2013-2017年,我國國內(nèi)生產(chǎn)總值的平均增長率約為6.7%
D.計算同上年相比的增量,2017年我國國內(nèi)生產(chǎn)總值的增量為近幾年最多
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司有A、B兩種型號的客車,它們的載客量、每天的租金如表所示:
A型號客車 | B型號客車 | |
載客量(人/輛) | 45 | 30 |
租金(元/輛) | 600 | 450 |
已知某中學計劃租用A、B兩種型號的客車共10輛,同時送七年級師生到沙家參加社會實踐活動,已知該中學租車的總費用不超過5600元.
(1)求最多能租用多少輛A型號客車?
(2)若七年級的師生共有380人,請寫出所有可能的租車方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,我把對角線互相垂直的四邊形叫做“垂美四邊形”.
(1)性質(zhì)探究:如圖1.已知四邊形ABCD中,AC⊥BD,垂足為O,求證:AB2+CD2=AD2+BC2.
(2)解決問題:已知AB=5,BC=4,分別以△ABC的邊BC和AB向外作等腰Rt△BCQ和等腰Rt△ABP.
①如圖2,當∠ACB=90°,連接PQ,求PQ;
②如圖3,當∠ACB≠90°,點M、N分別是AC、AP中點連接MN.若MN=,則S△ABC= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是人字型金屬屋架的示意圖,該屋架由BC、AC、BA、AD四段金屬材料焊接而成,其中A、B、C、D四點均為焊接點,且AB=AC,D為BC的中點,假設焊接所需的四段金屬材料已截好,并已標出BC段的中點D,那么,如果焊接工身邊只有可檢驗直角的角尺,而又為了準確快速地焊接,他應該首先選取的兩段金屬材料及焊接點是( 。
A.AB和AD,點AB.AB和AC,點B
C.AC和BC, 點CD.AD和BC,點D
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com