【題目】如圖,在△ABC中,AB=AC,BD平分∠ABC交AC于點D,點E是BC延長線上的一點,且BD=DE.點G是線段BC的中點,連結(jié)AG,交BD于點F,過點D作DH⊥BC,垂足為H.
(1)求證:△DCE為等腰三角形;
(2)若∠CDE=22.5°,DC=,求GH的長;
(3)探究線段CE,GH的數(shù)量關系并用等式表示,并說明理由.
【答案】(1)證明見解析;(2);(3)CE=2GH,理由見解析.
【解析】
(1)根據(jù)題意可得∠CBD=∠ABC=∠ACB,,由BD=DE,可得∠DBC=∠E=∠ACB,根據(jù)三角形的外角性質(zhì)可得∠CDE=∠ACB=∠E,可證△DCE為等腰三角形;
(2)根據(jù)題意可得CH=DH=1,△ABC是等腰直角三角形,由等腰三角形的性質(zhì)可得BG=GC,BH=HE=+1,即可求GH的值;
(3)CE=2GH,根據(jù)等腰三角形的性可得BG=GC,BH=HE,可得GH=GC﹣HC=GC﹣(HE﹣CE)=BC﹣BE+CE=CE,即CE=2GH
證明:(1)∵AB=AC,
∴∠ABC=∠ACB,
∵BD平分∠ABC,
∴∠CBD=∠ABC=∠ACB,
∵BD=DE,
∴∠DBC=∠E=∠ACB,
∵∠ACB=∠E+∠CDE,
∴∠CDE=∠ACB=∠E,
∴CD=CE,
∴△DCE是等腰三角形
(2)
∵∠CDE=22.5°,CD=CE=,
∴∠DCH=45°,且DH⊥BC,
∴∠HDC=∠DCH=45°
∴DH=CH,
∵DH2+CH2=DC2=2,
∴DH=CH=1,
∵∠ABC=∠DCH=45°
∴△ABC是等腰直角三角形,
又∵點G是BC 中點
∴AG⊥BC,AG=GC=BG,
∵BD=DE,DH⊥BC
∴BH=HE=+1
∵BH=BG+GH=CG+GH=CH+GH+GH=+1
∴1+2GH=+1
∴GH=
(3)CE=2GH
理由如下:∵AB=CA,點G 是BC的中點,
∴BG=GC,
∵BD=DE,DH⊥BC,
∴BH=HE,
∵GH=GC﹣HC=GC﹣(HE﹣CE)=BC﹣BE+CE=CE,
∴CE=2GH
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,正方形網(wǎng)格中,△ABC為格點三角形(即三角形的頂點都在格點上).
(1)把△ABC沿BA方向平移后,點A移到點A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;
(2)把△A1B1C1繞點A1按逆時針方向旋轉(zhuǎn)90°,在網(wǎng)格中畫出旋轉(zhuǎn)后的△A1B2C2;
(3)如果網(wǎng)格中小正方形的邊長為1,求點B經(jīng)過(1)、(2)變換的路徑總長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC的三個角是∠A,∠B,∠C ,它們所對的邊分別是a,b,c.①c2-a2=b2;②∠A=∠B=∠C;③c=a=b;④a=2,b=2 ,c=.上述四個條件中,能判定△ABC 為直角三角形的有( )
A. 1個 B. 2個
C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,O為坐標原點,拋物線y=ax2+bx+3交x軸于B、C兩點(點B在左,點C在右),交y軸于點A,且OA=OC,B(﹣1,0).
(1)求此拋物線的解析式;
(2)如圖2,點D為拋物線的頂點,連接CD,點P是拋物線上一動點,且在C、D兩點之間運動,過點P作PE∥y軸交線段CD于點E,設點P的橫坐標為t,線段PE長為d,寫出d與t的關系式(不要求寫出自變量t的取值范圍);
(3)如圖3,在(2)的條件下,連接BD,在BD上有一動點Q,且DQ=CE,連接EQ,當∠BQE+∠DEQ=90°時,求此時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2﹣(m+3)x+3m=0.
(1)求證:無論m取什么實數(shù)值,該方程總有兩個實數(shù)根.
(2)若該方程的兩實根x1和x2是一個矩形兩鄰邊的長且該矩形的對角線長為,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在 中, ,AC=BC, , ,垂足分別為D,E.
(1)若AD=2.5cm,DE=1.7cm,求BE的長.
(2)如圖2,在原題其他條件不變的前提下,將CE所在直線旋轉(zhuǎn)到 ABC的外部,請你猜想AD,DE,BE三者之間的數(shù)量關系,直接寫出結(jié)論:________.(不需證明)
(3)如圖3,若將原題中的條件改為:“在 ABC中,AC=BC,D,C,E三點在同一條直線上,并且有 ,其中 為任意鈍角”,那么(2)中你的猜想是否還成立?若成立,請予以證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AE是∠BAC的平分線,∠ABC的平分線 BM交AE于點M,點O在AB上,以點O為圓心,OB的長為半徑的圓經(jīng)過點M,交BC于點G,交 AB于點F.
(1)求證:AE為⊙O的切線.
(2)當BC=8,AC=12時,求⊙O的半徑.
(3)在(2)的條件下,求線段BG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究下面的問題:
(1)如圖甲,在邊長為a的正方形中去掉一個邊長為b的小正方形(a>b),把余下的部分剪拼成如圖乙的一個長方形,通過計算兩個圖形(陰影部分)的面積,驗證了一個等式,這個等式是________(用式子表示),即乘法公式中的___________公式.
(2)運用你所得到的公式計算:
①10.7×9.3
②
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E是AB的中點,點P從點E出發(fā),沿移動至終點C.設點P經(jīng)過的路徑長為x,的面積為y,則下列圖象能大致反映y與x之間的函數(shù)關系的是( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com