【題目】有一個(gè)直徑為1m的圓形鐵皮,要從中剪出一個(gè)最大的圓心角為90°的扇形ABC,如圖所示.

(1)求被剪掉陰影部分的面積:

(2)用所留的扇形鐵皮圍成一個(gè)圓錐,該圓錐的底面圓的半徑是多少?

【答案】(1)平方米;(2)米;

【解析】

試題(1)先根據(jù)圓周角定理可得弦BC為直徑,即可得到AB=AC,根據(jù)特殊角的銳角三角函數(shù)值可求得AB的長(zhǎng),最后根據(jù)扇形的面積公式即可求得結(jié)果;

2)設(shè)圓錐底面圓的半徑為r,而弧BC的長(zhǎng)即為圓錐底面的周長(zhǎng),根據(jù)弧長(zhǎng)公式及圓的周長(zhǎng)公式即可求得結(jié)果.

1∵∠BAC=90°

BC為直徑

∴AB=AC

∴AB=AC=BC·sin45°=

∴S陰影=SO-S扇形ABC=()2-;

2)設(shè)圓錐底面圓的半徑為r,而弧BC的長(zhǎng)即為圓錐底面的周長(zhǎng),由題意得

2r=,解得r=

答:(1)被剪掉的陰影部分的面積為;(2)該圓錐的底面圓半徑是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)閱讀下列材料:

我們可以通過(guò)以下方法求代數(shù)式的最小值

,

≥0

當(dāng)時(shí), 有最小值

請(qǐng)根據(jù)上述方法,解答下列問(wèn)題:

1,則的值是______;

2求證:無(wú)論x取何值,代數(shù)式的值都是正數(shù);

3)若代數(shù)式的最小值為2,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD的頂點(diǎn)A、C、D都在O上,AB與O相切于點(diǎn)A,BC與O交于點(diǎn)E,設(shè)OCD=α,BAD=β

(1)求證:AB=AE;

(2)試探究αβ之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,A30°,點(diǎn)DAB上,以BD為直徑的⊙OAC于點(diǎn)E,連接DE并延長(zhǎng),交BC的延長(zhǎng)線于點(diǎn)F

1)求證:BDF是等邊三角形;

2)連接AF、DC,若BC3,寫(xiě)出求四邊形AFCD面積的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=16cm,AD=4cm,點(diǎn)P、Q分別從A、B同時(shí)出發(fā),點(diǎn)P在邊AB上沿AB方向以2cm/s的速度勻速運(yùn)動(dòng),點(diǎn)Q在邊BC上沿BC方向以1cm/s的速度勻速運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x秒,PBQ的面積為y(cm2).

(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;

(2)求PBQ的面積的最大值.,并指出此時(shí)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖已知ABO的直徑,ADO于點(diǎn)A,點(diǎn)C是弧EB的中點(diǎn),則下列結(jié)論

OCAE;ECBC③∠DAEABE;ACOE,其中正確的有(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一條直線過(guò)點(diǎn),且與拋物線交于A、B兩點(diǎn),其中點(diǎn)A的橫坐標(biāo)是-2.

⑴求這條直線的函數(shù)關(guān)系式及點(diǎn)B的坐標(biāo) ;

⑵在軸上是否存在點(diǎn)C,使得ABC是直角三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;

⑶.過(guò)線段AB上一點(diǎn)P,作PM∥軸,交拋物線于點(diǎn)M,點(diǎn)M在第一象限;點(diǎn),當(dāng)點(diǎn)M的橫坐標(biāo)為何值時(shí),MN+3MP的長(zhǎng)度最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市正在進(jìn)行商業(yè)街改造,商業(yè)街起點(diǎn)在古民居P的南偏西60°方向上的A處,現(xiàn)已改造至古民居P南偏西30°方向上的B處,A與B相距150m,且B在A的正東方向.為不破壞古民居的風(fēng)貌,按照有關(guān)規(guī)定,在古民居周圍100m以內(nèi)不得修建現(xiàn)代化商業(yè)街.若工程隊(duì)繼續(xù)向正東方向修建200m商業(yè)街到C處,則對(duì)于從B到C的商業(yè)街改造是否違反有關(guān)規(guī)定?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O經(jīng)過(guò)點(diǎn)B,D,E,BDO的直徑,∠C=90°,BE平分ABC

(1)證明直線ACO的切線

(2)當(dāng)AE=4,AD=2時(shí)O的半徑

查看答案和解析>>

同步練習(xí)冊(cè)答案