【題目】國務院辦公廳2015年3月16日發(fā)布了《中國足球改革的總體方案》,這是中國足球歷史上的重大改革.為了進一步普及足球知識,傳播足球文化,我市舉行了“足球進校園”知識競賽活動,為了解足球知識的普及情況,隨機抽取了部分獲獎情況進行整理,得到下列不完整的統(tǒng)計圖表:
獲獎等次 | 頻數(shù) | 頻率 |
一等獎 | 10 | 0.05 |
二等獎 | 20 | 0.10 |
三等獎 | 30 | b |
優(yōu)勝獎 | a | 0.30 |
鼓勵獎 | 80 | 0.40 |
請根據(jù)所給信息,解答下列問題:
(1)a= , b= , 且補全頻數(shù)分布直方圖;
(2)若用扇形統(tǒng)計圖來描述獲獎分布情況,問獲得優(yōu)勝獎對應的扇形圓心角的度數(shù)是多少?
(3)在這次競賽中,甲、乙、丙、丁四位同學都獲得一等獎,若從這四位同學中隨機選取兩位同學代表我市參加上一級競賽,請用樹狀圖或列表的方法,計算恰好選中甲、乙二人的概率.
【答案】
(1)200;0.15
(2)優(yōu)勝獎所在扇形的圓心角為0.30×360°=108°
(3)解:列表:甲乙丙丁分別用ABCD表示,
A | B | C | D | |
A | AB | AC | AD | |
B | BA | BC | BD | |
C | CA | CB | CD | |
D | DA | DB | DC |
∵共有12種等可能的結果,恰好選中A、B的有2種,
畫樹狀圖如下:
∴P(選中A、B)= =
【解析】解:(1)樣本總數(shù)為10÷0.05=200人, a=200﹣10﹣20﹣30﹣80=60人,
b=30÷200=0.15,
故答案為200,0.15;
(1)根據(jù)公式頻率=頻數(shù)÷樣本總數(shù),求得樣本總數(shù),再根據(jù)公式得出a,b的值即可;(2)根據(jù)公式優(yōu)勝獎對應的扇形圓心角的度數(shù)=優(yōu)勝獎的頻率×360°計算即可;(3)畫樹狀圖或列表將所有等可能的結果列舉出來,利用概率公式求解即可.本題考查了列表與樹狀圖的知識,解題的關鍵是通過列表將所有等可能的結果列舉出來,然后利用概率公式求解,難度不大.
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB= ,AC= ,BC=1.
(1)求證:∠A≠30°;
(2)將△ABC繞BC所在直線旋轉(zhuǎn)一周,求所得幾何體的表面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D為AB的中點,EF為△ACD的中位線,四邊形EFGH為△ACD的內(nèi)接矩形(矩形的四個頂點均在△ACD的邊上).
(1)計算矩形EFGH的面積;
(2)將矩形EFGH沿AB向右平移,F(xiàn)落在BC上時停止移動.在平移過程中,當矩形與△CBD重疊部分的面積為 時,求矩形平移的距離;
(3)如圖③,將(2)中矩形平移停止時所得的矩形記為矩形E1F1G1H1 , 將矩形E1F1G1H1繞G1點按順時針方向旋轉(zhuǎn),當H1落在CD上時停止轉(zhuǎn)動,旋轉(zhuǎn)后的矩形記為矩形E2F2G1H2 , 設旋轉(zhuǎn)角為α,求cosα的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=6,AC=8,BC=10,D是△ABC內(nèi)部或BC邊上的一個動點(與B、C不重合),以D為頂點作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.
(1)求∠D的度數(shù);
(2)若兩三角形重疊部分的形狀始終是四邊形AGDH.
①如圖1,連接GH、AD,當GH⊥AD時,請判斷四邊形AGDH的形狀,并證明;
②當四邊形AGDH的面積最大時,過A作AP⊥EF于P,且AP=AD,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+4與雙曲線y= (k≠0)相交于A(﹣1,a)、B兩點,在y軸上找一點P,當PA+PB的值最小時,點P的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經(jīng)過點A的直線y=﹣ x+b與拋物線的另一個交點為D.
(1)若點D的橫坐標為2,求拋物線的函數(shù)解析式;
(2)若在第三象限內(nèi)的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標;
(3)在(1)的條件下,設點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發(fā),沿線段BE以每秒1個單位的速度運動到點E,再沿線段ED以每秒 個單位的速度運動到點D后停止,問當點E的坐標是多少時,點Q在整個運動過程中所用時間最少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,BC=3,AB=5.點P從點B出發(fā),以每秒1個單位長度沿B→C→A→B的方向運動;點Q從點C出發(fā),以每秒2個單位沿C→A→B方向的運動,到達點B后立即原速返回,若P、Q兩點同時運動,相遇后同時停止,設運動時間為t秒.
(1)當t=時,點P與點Q相遇;
(2)在點P從點B到點C的運動過程中,當t為何值時,△PCQ為等腰三角形?
(3)在點Q從點B返回點A的運動過程中,設△PCQ的面積為S平方單位.
①求S與t之間的函數(shù)關系式;
②當S最大時,過點P作直線交AB于點D,將△ABC中沿直線PD折疊,使點A落在直線PC上,求折疊后的△APD與△PCQ重疊部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知點E,F(xiàn),G,H分別是四邊形ABCD各邊AB,BC,CD,DA的中點,根據(jù)以下思路可以證明四邊形EFGH是平行四邊形:
(1)如圖2,將圖1中的點C移動至與點E重合的位置,F(xiàn),G,H仍是BC,CD,DA的中點,求證:四邊形CFGH是平行四邊形;
(2)如圖3,在邊長為1的小正方形組成的5×5網(wǎng)格中,點A,C,B都在格點上,在格點上畫出點D,使點C與BC,CD,DA的中點F,G,H組成正方形CFGH;
(3)在(2)條件下求出正方形CFGH的邊長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com