當x
4
3
4
3
時,代數(shù)式3x-4的值是負數(shù).
分析:根據(jù)題意得出不等式,求出不等式得解即可.
解答:解:∵代數(shù)式3x-4的值是負數(shù),
∴3x-4<0,
3x<4,
x<
4
3
,
故答案為:
4
3
點評:本題考查了不等式的解法,關(guān)鍵是能根據(jù)題意得出不等式,用了轉(zhuǎn)化思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在△ABC中,∠ACB=90°,AB=5,tanA=
43
,點P在△ABC內(nèi),且PB=PC,點M是斜邊AB上的中點,直線PM與邊BC的交點為D(如圖),點Q是直線PM上的一動點.
(1)試判斷直線PM與AC的位置關(guān)系,并證明你的結(jié)論;
(2)當Q在△ABC的外部時,已知由點Q、B、D組成的三角形與△ABC相似,求QM的長;
(3)當Q不在△ABC的邊上時,設(shè)BQ=x,△BQM的面積為y,請直接寫出y與x的函數(shù)關(guān)系式及函數(shù)的定義域.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•吳江市模擬)如圖所示,點B坐標為(18,0),點A坐標為(18,6),動點P從點O開始沿OB以每秒3個單位長度的速度向點B移動,動點Q從點B開始沿BA以每秒1個單位長度的速度向點A移動.如果P、Q分別從O、B同時出發(fā),用t(秒)表示移動的時間(0<t≤6),那么,
(1)當t=
3或5.4
3或5.4
時,以點P、B、Q為頂點的三角形與△AOB相似;
(2)若設(shè)四邊形OPQA的面積為y,試寫出y與t的函數(shù)關(guān)系式,并求出t取何值時,四邊形OPQA的面積最小?
(3)在y軸上是否存在點E,使點P、Q在移動過程中,以B、Q、E、P為頂點的四邊形的面積是一個常數(shù),請求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知:△ABC為邊長是4
3
的等邊三角形,四邊形DEFG為邊長是6的正方形.現(xiàn)將等邊△ABC和正方形DEFG按如圖1的方式擺放,使點C與點E重合,點B、C(E)、F在同一條直線上,△ABC從圖1的位置出發(fā),以每秒1個單位長度的速度沿EF方向向右勻速運動,當點C與點F重合時暫停運動,設(shè)△ABC的運動時間為t秒(t≥0).

(1)在整個運動過程中,設(shè)等邊△ABC和正方形DEFG重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式;
(2)如圖2,當點A與點D重合時,作∠ABE的角平分線BM交AE于M點,將△ABM繞點A逆時針旋轉(zhuǎn),使邊AB與邊AC重合,得到△ACN.在線段AG上是否存在H點,使得△ANH為等腰三角形.如果存在,請求出線段EH的長度;若不存在,請說明理由.
(3)如圖3,若四邊形DEFG為邊長為4
3
的正方形,△ABC的移動速度為每秒
3
個單位長度,其余條件保持不變.△ABC開始移動的同時,Q點從F點開始,沿折線FG-GD以每秒2
3
個單位長度開始移動,△ABC停止運動時,Q點也停止運動.設(shè)在運動過程中,DE交折線BA-AC于P點,則是否存在t的值,使得PC⊥EQ,若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題:你能比較兩個數(shù)20062007與20072006的大小嗎?為了解決問題,首先把它抽象成數(shù)學(xué)問題,寫出它的一般形式,即比較nn+1與(n+1)n的大。╪是正整數(shù)),然后,從分析n=1,n=2,n=3,…,這些簡單情形入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,猜想出結(jié)論.
(1)通過計算,比較下列各組中兩個數(shù)的大。ㄌ睢埃尽,“<”,“=”)
①12
21; ②23
32;③34
43;④45
54;⑤56
65; …
(2)根據(jù)上面的歸納猜想得到的一般結(jié)論,試比較下面兩個數(shù)的大。20062007
20072006
(3)從第(1)題的結(jié)果經(jīng)過歸納,可以猜想出nn+1與(n+1)n的大小關(guān)系是
當n=1或2時,nn+1<(n+1)n;當n>2的整數(shù)時,nn+1>(n+1)n
當n=1或2時,nn+1<(n+1)n;當n>2的整數(shù)時,nn+1>(n+1)n

查看答案和解析>>

同步練習(xí)冊答案