(2003•泰安)如圖,在梯形ABCD中,AD∥BC,AD=2,BC=8,AC=6,BD=8,則此梯形的面積是( )

A.24
B.20
C.16
D.12
【答案】分析:此題的關(guān)鍵是作輔線,并將梯形的面積轉(zhuǎn)化成直角三角形的面積.
解答:解:過點D作DE∥AC,交BC的延長線于點E,
∴四邊形ACED為平行四邊形
∴CE=AD=2,DE=AC=6,BE=10,
∴BD2+DE2=BE2,
∴△BDE是直角三角形,
∴S△BDE=6×8÷2=24.
∵S△ABD=S△ADC=S△CDE,
∴S梯形=S△BDE=24.
故選A.
點評:解決本題的關(guān)鍵是作出輔助線得到梯形的面積等于某個三角形的面積.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2003•泰安)如圖,矩形OBCD的邊OB=2,OD=4,過點B、C且與x軸相切于點A的⊙M,與y軸的另一交點為E.
(1)求點A、E的坐標;
(2)求過A、C、E三點的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年山東省泰安市中考數(shù)學試卷(解析版) 題型:解答題

(2003•泰安)如圖,矩形OBCD的邊OB=2,OD=4,過點B、C且與x軸相切于點A的⊙M,與y軸的另一交點為E.
(1)求點A、E的坐標;
(2)求過A、C、E三點的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年山東省泰安市中考數(shù)學試卷(解析版) 題型:填空題

(2003•泰安)如圖,水平放著的圓柱形排水管的截面半徑是0.5m,其中水面寬AB為0.6m,則水的最大深度為    m.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年山東省泰安市中考數(shù)學試卷(解析版) 題型:選擇題

(2003•泰安)如圖,菱形紙片ABCD的一內(nèi)角為60°,邊長為2,將它繞O點順時針旋轉(zhuǎn)90°后到A′B′C′D′位置,則旋轉(zhuǎn)前后兩菱形重疊部分多邊形的周長是( )
A.8
B.4(-1)
C.8(-1)
D.4(+1)

查看答案和解析>>

科目:初中數(shù)學 來源:2003年山東省泰安市中考數(shù)學試卷(解析版) 題型:選擇題

(2003•泰安)如圖,矩形ABCD中,AB=2,BC=2,以BC的中點E為圓心,以AB長為半徑作弧MHN與AB及CD交于M、N,與AD相切于H,則圖中陰影部分的面積是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案