正十邊形的邊長(zhǎng)為a10,邊心距為r10,那么r10a10等于( )

Atan18°  Btan18°   Ctan72°  Dtan72°

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1)操作:如圖2,O是邊長(zhǎng)為a的正方形ABCD的中心,將一塊半徑足夠長(zhǎng)、圓心角為直角的扇形紙板的圓心放在O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).求證:正方形ABCD的邊被紙板覆蓋部分的總長(zhǎng)度為定值a.
(2)思考:如圖1,將一塊半徑足夠長(zhǎng)的扇形紙板的圓心放在邊長(zhǎng)為a的正三角形或邊長(zhǎng)為a的正五邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).當(dāng)扇形紙板的圓心角為
 
時(shí),正三角形的邊被紙板覆蓋部分的總長(zhǎng)度為定值a;如圖3,當(dāng)扇形紙板的圓心角為
 
時(shí),正五邊形的邊被紙板覆蓋部分的總長(zhǎng)度為定值a.(直接填空)
(3)探究:一般地,將一塊半徑足夠長(zhǎng)的扇形紙板的圓心放在邊長(zhǎng)為a的正n邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn),當(dāng)扇形紙板的圓心角為
 
度時(shí),正n邊形的邊被紙板覆蓋部分的總長(zhǎng)度為定值a;這時(shí)正n邊形被紙板覆蓋部分的面積是否也為定值?若為定值,寫出它與正n邊形面積S之間的關(guān)系(不需證明);若不是定值,請(qǐng)說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

O是邊長(zhǎng)為a的正多邊形的中心,將一塊半徑足夠長(zhǎng),圓心角為α的扇形紙板的圓心放在O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).
(1)若正多邊形為正三角形,扇形的圓心角α=120°,請(qǐng)你通過觀察或測(cè)量,填空:
①如圖1,正三角形ABC的邊被扇形紙板覆蓋部分的總長(zhǎng)度為
 
;
②如圖2,正三角形ABC的邊被扇形紙板覆蓋部分的總長(zhǎng)度為
 

(2)若正多邊形為正方形,扇形的圓心角α=90°時(shí),①如圖3,正方形ABCD的邊被扇形紙板覆蓋部分的總長(zhǎng)度為
 
;
②如圖4,正方形ABCD的邊被扇形紙板覆蓋部分的總長(zhǎng)度為多少?并給予證明;
(3)若正多邊形為正五邊形,如圖5,當(dāng)扇形紙板的圓心角α為
 
時(shí),正五邊形的邊被扇形紙板覆蓋部分的總長(zhǎng)度仍為定值a.
(4)一般地,將一塊半徑足夠長(zhǎng)的扇形紙板的圓心放在邊長(zhǎng)為a的正n邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).當(dāng)扇形紙板的圓心角為
 
時(shí),正n邊形的邊被扇形紙板覆蓋部分的總長(zhǎng)度為定值a.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•邯鄲一模)嘗試探究:
小張?jiān)跀?shù)學(xué)實(shí)踐活動(dòng)中,畫了一個(gè)Rt△ABC,使∠ACB=90°,BC=1,AC=2,再以B為圓心,BC為半徑畫弧交AB于點(diǎn)D,然后以A為圓心以AD長(zhǎng)為半徑畫弧交AC于點(diǎn)E,如圖,則AE=
5
-1
5
-1
;此時(shí)小張發(fā)現(xiàn)AE2=AC•EC,請(qǐng)同學(xué)們驗(yàn)證小張的發(fā)現(xiàn)是否正確.
拓展延伸:
小張利用上圖中的線段AC及點(diǎn)E,接著構(gòu)造AE=EF=CF,連接AF,得到下圖,試完成以下問題:
①求證△ACF∽△FCE
②求∠A的度數(shù);
③求cos∠A

應(yīng)用遷移:
利用上面的結(jié)論,直接寫出:
①半徑為2的圓內(nèi)接正十邊形的邊長(zhǎng)為
5
-1
5
-1

②邊長(zhǎng)為2的正五邊形的對(duì)角線的長(zhǎng)為
5
+1
5
+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:素質(zhì)教育新學(xué)案·初中幾何·第三冊(cè) 題型:013

正十邊形的邊長(zhǎng)為,邊心距為,那么等于

[  ]

A.
B.tan18°
C.
D.tan72°

查看答案和解析>>

同步練習(xí)冊(cè)答案