【題目】某中學(xué)課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形花草園,其中一邊靠墻,另外三邊周長(zhǎng)為米的籬笆圍成.已知墻長(zhǎng)為米(如圖所示),設(shè)這個(gè)花草園垂直于墻的一邊長(zhǎng)為米.

若花草園的面積為平方米,求;

若平行于墻的一邊長(zhǎng)不小于米,這個(gè)花草園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請(qǐng)說明理由;

當(dāng)這個(gè)花草園的面積不小于平方米時(shí),直接寫出的取值范圍.

【答案】(1)x=10;(2) 當(dāng)時(shí),;(3)

【解析】

(1)根據(jù)題意得方程求解即可;

(2)設(shè)苗圃園的面積為y,根據(jù)題意得到二次函數(shù)解析式y=x(30-2x)=-2x2+30x,根據(jù)二次函數(shù)的性質(zhì)求解即可;

(3)由題意得不等式,即可得到結(jié)論.

根據(jù)題意知平行于墻的一邊的長(zhǎng)為米,

則有:

解得:,

,

;

設(shè)苗圃園的面積為,

,

∴苗圃園的面積有最大值,

,

解得:,

,

∴當(dāng)時(shí),即平行于墻的一邊長(zhǎng)米,平方米;

當(dāng)時(shí),;

由題意得,

解得:,

又∵,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣++2與x軸相交于A,B兩點(diǎn),(點(diǎn)A在B點(diǎn)左側(cè))與y軸交于點(diǎn)C.

(1)求A,B兩點(diǎn)坐標(biāo).

(2)連結(jié)AC,若點(diǎn)P在第一象限的拋物線上,P的橫坐標(biāo)為t,四邊形ABPC的面積為S.試用含t的式子表示S,并求t為何值時(shí),S最大.

(3)在(2)的基礎(chǔ)上,在整條拋物線上和對(duì)稱軸上是否分別存在點(diǎn)G和點(diǎn)H,使以A,G,H,P四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,請(qǐng)直接寫出G,H的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,、相交于點(diǎn),于點(diǎn).

1)求證:

2)求證:,.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某市20191121---1127日最高氣溫走勢(shì)圖,則下列說法不正確的是(

A.21---22日的最高氣溫呈上升趨勢(shì)

B.7天中,23日的最高氣溫高于其他6天的的最高氣溫

C.23---25日的最高氣溫呈下降趨勢(shì)

D.相鄰兩天中,24---25日的最高氣溫變化最大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABC中,AB=AC,DE分別在AB,AC上,AD=AE,將ADE繞點(diǎn)A逆時(shí)針任意旋轉(zhuǎn).

1)發(fā)現(xiàn):如圖2,連結(jié)BD,CE,若∠BAC=60°,D點(diǎn)恰在線段BE上,則∠BEC= °;

2)探究:如圖3,連結(jié)BD,CE,并交于點(diǎn)F,求證:∠BFC=BAC;

3)拓展:如圖4,若∠BAC=90°AB=5,AD=2,連結(jié)CD,BE,請(qǐng)直接寫出四邊形BCDE的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在寬20米,長(zhǎng)32米的矩形耕地上,修筑同樣寬的三條路(兩條縱向,一條橫向,并且橫向與縱向互相垂直),把這塊耕地分成大小相等的六塊試驗(yàn)田,要使試驗(yàn)田的面積是570平方米,問道路應(yīng)該多寬?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,□ABCD的對(duì)角線交于點(diǎn)O,點(diǎn)E在邊BC的延長(zhǎng)線上,且OE=OB,連接DE

(1)求證:BDE是直角三角形;

(2)如果OECD,試判斷BDEDCE是否相似,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=kx2+2kx﹣3k(k≠0),的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,且OC=OA.

(1)點(diǎn)A坐標(biāo)為   ,點(diǎn)B坐標(biāo)為   ,拋物線的解析式為   ;

(2)若點(diǎn)P是第二象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),連接AP、CP,當(dāng)四邊形ABCP的面積最大時(shí),求點(diǎn)P的坐標(biāo);

(3)若點(diǎn)Q(0,m)是y軸上的動(dòng)點(diǎn),連接AQ、BQ,

當(dāng)AQB是鈍角時(shí),求m的取值范圍;

當(dāng)AQB=60°時(shí),則m=   .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線形拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,則水面下降1m時(shí),水面寬度增加_____m.

查看答案和解析>>

同步練習(xí)冊(cè)答案