如圖,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,
∠DCB=30°.點(diǎn)E、F同時(shí)從B點(diǎn)出發(fā),沿射線BC向右勻速移動(dòng).已知F點(diǎn)移動(dòng)速度是E點(diǎn)移動(dòng)速度的2倍,以EF為一邊在CB的上方作等邊△EFG.設(shè)E點(diǎn)移動(dòng)距離為x(x>0).

⑴△EFG的邊長(zhǎng)是___________ (用含有x的代數(shù)式表示),當(dāng)x=2時(shí),點(diǎn)G的位置在_______;
⑵若△EFG與梯形ABCD重疊部分面積是y,求
①當(dāng)0<x≤2時(shí),y與x之間的函數(shù)關(guān)系式;
②當(dāng)2<x≤6時(shí),y與x之間的函數(shù)關(guān)系式;
⑶探求⑵中得到的函數(shù)y在x取含何值時(shí),存在最大值,并求出最大值.

(1)2;(2)①y=,②分兩種情況:Ⅰ.當(dāng)2<x<3時(shí),y=,
Ⅱ.當(dāng)3≤x≤6時(shí),y=x2?;(3)當(dāng) x=時(shí),y最大=

解析試題分析:(1)根據(jù)等邊三角形的三邊相等,則△EFG的邊長(zhǎng)是點(diǎn)E移動(dòng)的距離;根據(jù)等邊三角形的三線合一和F點(diǎn)移動(dòng)速度是E點(diǎn)移動(dòng)速度的2倍,即可分析出BF=4,此時(shí)等邊三角形的邊長(zhǎng)是2,則點(diǎn)G和點(diǎn)D重合;
(2)①當(dāng)0<x≤2時(shí),重疊部分的面積即為等邊三角形的面積;
②當(dāng)2<x≤6時(shí),分兩種情況:當(dāng)2<x<3時(shí)和當(dāng)3≤x≤6時(shí),進(jìn)行計(jì)算;
(3)分別求得(2)中每一種情況的最大值,再進(jìn)一步比較取其中的最大值即可.
試題解析:
解:(1)∵點(diǎn)E、F同時(shí)從B點(diǎn)出發(fā),沿射線BC向右勻速移動(dòng),且F點(diǎn)移動(dòng)速度是E點(diǎn)移動(dòng)速度的2倍,
∴BF=2BE=2x,
∴EF=BF-BE=2x-x=x,
∴△EFG的邊長(zhǎng)是x;
過(guò)D作DH⊥BC于H,得矩形ABHD及直角△CDH,連接DE、DF.
在直角△CDH中,∵∠C=30°,CH=BC-AD=3,
∴DH=CH•tan30°=3×=
當(dāng)x=2時(shí),BE=EF=2,
∵△EFG是等邊三角形,且DH⊥BC交點(diǎn)H,
∴EH=HF=1.
∴DE=DF==2,
∴△DEF是等邊三角形,
∴點(diǎn)G的位置在D點(diǎn).

(2)①當(dāng)0<x≤2時(shí),△EFG在梯形ABCD內(nèi)部,所以y=;
②分兩種情況:
Ⅰ.當(dāng)2<x<3時(shí),如圖1,點(diǎn)E、點(diǎn)F在線段BC上,
△EFG與梯形ABCD重疊部分為四邊形EFNM,
∵∠FNC=∠FCN=30°,∴FN=FC=6-2x.∴GN=3x-6.
∵在Rt△NMG中,∠G=60°,GN=3x-6,
∴GM=(3x-6),
由勾股定理得:MN=(3x-6),
∴SGMN=×GM×MN=×(3x-6)×(3x-6)=(3x-6)2,
所以,此時(shí)y=-(3x-6)2=;

Ⅱ.當(dāng)3≤x≤6時(shí),如圖2,點(diǎn)E在線段BC上,點(diǎn)F在射線CH上,
△EFG與梯形ABCD重疊部分為△ECP,
∵EC=6-x,
∴y=(6-x)2=x2?
(3)當(dāng)0<x≤2時(shí),
∵y=x2,在x>0時(shí),y隨x增大而增大,
∴x=2時(shí),y最大=;
當(dāng)2<x<3時(shí),∵y=,在x=時(shí),y最大=;
當(dāng)3≤x≤6時(shí),∵y=x2?;,在x<6時(shí),y隨x增大而減小,
∴x=3時(shí),y最大=
綜上所述:當(dāng) x=時(shí),y最大=

考點(diǎn):1.二次函數(shù)的最值;2.梯形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:拋物線與x軸的兩個(gè)交點(diǎn)分別為A(1,0)和B(3,0),與y軸交于點(diǎn)C.

(1)求此二次函數(shù)的解析式;
(2)寫出點(diǎn)C的坐標(biāo)________,頂點(diǎn)D的坐標(biāo)為__________;
(3)將直線CD沿y軸向下平移3個(gè)單位長(zhǎng)度,求平移后直線m的解析式;
(4)在直線m上是否存在一點(diǎn)E,使得以點(diǎn)E、A、B、C為頂點(diǎn)的四邊形是梯形,如果存在,請(qǐng)直接寫出所有滿足條件的E點(diǎn)的坐標(biāo)__________________________________(不必寫出過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某商場(chǎng)購(gòu)進(jìn)一種單價(jià)為40元的籃球,如果以單價(jià)50元售出,那么每月可售出500個(gè),根據(jù)銷售經(jīng)驗(yàn),銷售單價(jià)每提高1元,銷售量相應(yīng)減少10個(gè).
(1)設(shè)銷售單價(jià)提高x元(x為正整數(shù)),寫出每月銷售量y(個(gè))與x(元)之間的函數(shù)關(guān)系式;
(2)假設(shè)這種籃球每月的銷售利潤(rùn)為w元,試寫出w與x之間的函數(shù)關(guān)系式,并通過(guò)配方討論,當(dāng)銷售單價(jià)定為多少元時(shí),每月銷售這種籃球的利潤(rùn)最大,最大利潤(rùn)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)y=-x2-x.

(1)在給定的直角坐標(biāo)系中,畫出這個(gè)函數(shù)的圖象;
(2)根據(jù)圖象,寫出當(dāng)y<0時(shí),x的取值范圍;
(3)若將此圖象沿x軸向右平移3個(gè)單位,請(qǐng)寫出平移后圖象所對(duì)應(yīng)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

為了落實(shí)國(guó)務(wù)院的指示精神,某地方政府出臺(tái)了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為每千克20元,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克)有如下關(guān)系:y=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤(rùn)為w元.
(1)求w與x之間的函數(shù)關(guān)系式.
(2)該產(chǎn)品銷售價(jià)定為每千克多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?
(3)如果物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于每千克28元,該農(nóng)戶想要每天獲得150元的銷售利潤(rùn),銷售價(jià)應(yīng)定為每千克多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在矩形OABC中,點(diǎn)A(0,10),C(8,0).沿直線CD折疊矩形OABC的一邊BC,使點(diǎn)B落在OA邊上的點(diǎn)E處.分別以O(shè)C, OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系,拋物線經(jīng)過(guò)O,D,C三點(diǎn).

(1)求D的的坐標(biāo)及拋物線的解析式;
(2)一動(dòng)點(diǎn)P從點(diǎn)E出發(fā),沿EC以每秒2個(gè)單位長(zhǎng)的速度向點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CO以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),以P、Q、C為頂點(diǎn)的三角形與△ADE相似?
(3)點(diǎn)N在拋物線對(duì)稱軸上,點(diǎn)M在拋物線上,是否存在這樣的點(diǎn)M與點(diǎn)N,使以M,N,C,E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)M與點(diǎn)N的坐標(biāo)(不寫求解過(guò)程);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,拋物線的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),已知點(diǎn)B坐標(biāo)為(4,0).

(1)求拋物線的解析式;
(2)判斷△ABC的形狀,說(shuō)出△ABC外接圓的圓心位置,并求出圓心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

為了落實(shí)國(guó)務(wù)院的指示精神,地方政府出臺(tái)了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為每千克20元,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克)有如下關(guān)系:. 設(shè)這種產(chǎn)品每天的銷售利潤(rùn)為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該產(chǎn)品銷售價(jià)定為每千克多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

綜合與探究:如圖,拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè))與y軸交于點(diǎn)C,連接BC,以BC為一邊,點(diǎn)O為對(duì)稱中心作菱形BDEC,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過(guò)點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q。

(1)求點(diǎn)A,B,C的坐標(biāo)。
(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),直線l分別交BD,BC于點(diǎn)M,N。試探究m為何值時(shí),四邊形CQMD是平行四邊形,此時(shí),請(qǐng)判斷四邊形CQBM的形狀,并說(shuō)明理由。
(3)當(dāng)點(diǎn)P在線段EB上運(yùn)動(dòng)時(shí),是否存在點(diǎn) Q,使△BDQ為直角三角形,若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案