【題目】某活動中,共募得捐款32000000元,將32000000用科學記數(shù)法表示為

A.0.32×108B.3.2×106C.3.2×107D.32×107

【答案】C

【解析】

根據(jù)科學記數(shù)法的定義,科學記數(shù)法的表示形式為a×10n,其中1≤|a|10n為整數(shù),表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數(shù)是大于或等于1還是小于1.當該數(shù)大于或等于1時,n為它的整數(shù)位數(shù)減1;當該數(shù)小于1時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點前的10).32000000一共8位,從而32000000=3.2×107.故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為6的大正方形中有兩個小正方形,若兩個小正方形的面積分別為S1S2,比較S1S2的大小( 。

A. S1S2 B. S1=S2 C. S1S2 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,OE平分∠BOD,OF平分∠COE.

(1)若∠AOC=76°,求∠BOF的度數(shù);

(2)若∠BOF=36°,求∠AOC的度數(shù);

(3)若|∠AOC﹣BOF|=α°,請直接寫出∠AOC和∠BOF的度數(shù).(用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AGF=ABC,1+2=180°.

(1)試判斷BFDE的位置關系,并說明理由;

(2)BFAC,2=150°,求∠AFG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料并回答問題.

閱讀:

數(shù)軸上表示-2和-5的兩點之間的距離等于(-2--5)=3

數(shù)軸上表示1和-3的兩點之間的距離等于1--3)=4

一般地,數(shù)軸上兩點之間的距離等于右邊點對應的數(shù)減去左邊點對應的數(shù).

問題:

如圖,O 為數(shù)軸原點,A、B 、C是數(shù)軸上的三點,A 、C兩點對應的數(shù)互為相反數(shù),且A點對應的數(shù)為-6,B點對應的數(shù)是最大負整數(shù).

B對應的數(shù)是 ,并請在數(shù)軸上標出點B位置;

已知點P在線段BC上,且PBPC,求線段AP中點對應的數(shù);

若數(shù)軸上一動點Q表示的數(shù)為x,當QB2時,求的值(a,b,c是點AB 、C在數(shù)軸上對應的數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】化簡:

(1)( )4×()3×()2

(2)an-1·an·a;

(3)(-x2)·(x3)·(-x)2;

(4)x2·x5+x·x2·x4;

(5)(x-y)2·(y-x)3+2(x-y)·(x-y)4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,將點Px,y)先向左平移4個單位,再向上平移3個單位后得到點P′(1,2),則點P的坐標為( 。

A.2,6B.(﹣35C.(﹣3,1D.5,﹣1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解并在括號內(nèi)填注理由:

如圖,已知ABCD,∠1∠2,試說明EPFQ

 證明:∵ABCD,

 ∴∠MEBMFD_____________

 又∵∠1∠2,

 ∴∠MEB∠1MFD∠2

 即MEP______

EP___________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖示,若ABC內(nèi)一點P滿足PAC=PBA=PCB,則點P為ABC的布洛卡點.三角形的布洛卡點(Brocard point)是法國數(shù)學家和數(shù)學教育家克洛爾(A.L.Crelle 1780﹣1855)于1816年首次發(fā)現(xiàn),但他的發(fā)現(xiàn)并未被當時的人們所注意,1875年,布洛卡點被一個數(shù)學愛好者法國軍官布洛卡(Brocard 1845﹣1922)重新發(fā)現(xiàn),并用他的名字命名.問題:已知在等腰直角三角形DEF中,EDF=90°,若點Q為DEF的布洛卡點,DQ=1,則EQ+FQ=(

A.5 B.4 C.3+ D.2+

查看答案和解析>>

同步練習冊答案