【題目】如圖,正方形ABCD的四個頂點在坐標(biāo)軸上,A點坐標(biāo)為(3,0),假設(shè)有甲、乙兩個物體分別由點A同時出發(fā),沿正方形ABCD的邊作環(huán)繞運動,物體甲按逆時針方向勻速運動,物體乙按順時針方向勻速運動,如果甲物體12秒鐘可環(huán)繞一周回到A點,乙物體24秒鐘可環(huán)繞一周回到A點,則兩個物體運動后的第2017次相遇地點的坐標(biāo)是( )
A.(3,0)
B.(﹣1,2)
C.(﹣3,0)
D.(﹣1,﹣2)
【答案】D
【解析】解:甲、乙兩物體兩次相遇間隔為1÷( + )=8(秒),
∵2017×8=24×672+8,
∴兩個物體運動后的第2017次相遇地點為乙物體第8秒運動到的位置.
∵乙物體第2秒運動到點(2,﹣1),乙物體第4秒運動到點(1,﹣2),乙物體第6秒運動到點(0,﹣3),乙物體第8秒運動到點(﹣1,﹣2),
∴兩個物體運動后的第2017次相遇地點的坐標(biāo)是(﹣1,﹣2).
故選D.
由甲、乙兩物體單獨環(huán)繞一周的時間即可算出兩物體每兩次相遇間的間隔時間,根據(jù)2017×8=24×672+8即可得出兩個物體運動后的第2017次相遇地點為乙物體第8秒運動到的位置,結(jié)合圖形找出乙物體第8秒運動到點的坐標(biāo)即可得出結(jié)論.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小平所在的學(xué)習(xí)小組發(fā)現(xiàn),車輛轉(zhuǎn)彎時,能否順利通過直角彎道的標(biāo)準(zhǔn)是,車輛是否可以行駛到和路的邊界夾角是45°的位置(如圖1中 ②的位置).例如,圖2是某巷子的俯視圖,巷子路面寬4m,轉(zhuǎn)彎處為直角,車輛的車身為矩形ABCD,CD與DE、CE的夾角都是45°時,連接EF,交CD于點G,若GF的長度至少能達到車身寬度,即車輛能通過.
(1)小平認為長8m,寬3m的消防車不能通過該直角轉(zhuǎn)彎,請你幫他說明理由;
(2)小平提出將拐彎處改為圓。 和 是以O(shè)為圓心,分別以O(shè)M和ON為半徑的。,長8m,寬3m的消防車就可以通過該彎道了,具體的方案如圖,其中OM⊥OM′,你能幫小平算出,ON至少為多少時,這種消防車可以通過該巷子?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3…按如圖所示的方式放置,其中點B1在y軸上,點C1、E1、E2、C2、E3、E4、C3…在x軸上,已知正方形A1B1C1D1的邊長為l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,則正方形A2017B2017C2017 D2017的邊長是( )
A.( )2016
B.( )2017
C.( )2016
D.( )2017
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點P是△ABC邊上一動點,沿B→A→C的路徑移動,過點P作PD⊥BC于點D,設(shè)BD=x,△BDP的面積為y,則下列能大致反映y與x函數(shù)關(guān)系的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿AF折疊,使點D落在BC邊的點E處,過點E作EG∥CD交AF于點G,連接DG.
(1)求證:四邊形EFDG是菱形;
(2)探究線段EG、GF、AF之間的數(shù)量關(guān)系,并說明理由;
(3)若AG=6,EG=2 ,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是矩形,對角線AC的垂直平分線交AD于點E,交BC于點F,連接AF,CE,解答下列問題:
(1)求證:四邊形AECF是菱形;
(2)記AB=a,BF=b,若a,b是方程x2﹣2(m+1)x+m2+1=0的兩根,問當(dāng)m為何值時,菱形AECF的周長為8 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=6,將△ABC繞點C順時針方向旋轉(zhuǎn)一定角度后得到△A′B′C.若點A′恰好落在BC的延長線上,則點B′到BA′的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形紙片ABCD中,對角線AC、BD交于點O,折疊正方形紙片ABCD,使AD落在BD上,點A恰好與BD上的點F重合,展開后,折痕DE分別交AB,AC于點E、G,連接GF,有下列結(jié)論: ①∠AGD=112.5°;②tan∠AED= +1;③四邊形AEFG是菱形;④S△ACD= S△OCD .
其中正確結(jié)論的序號是 . (把所有正確結(jié)論的序號都填在橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知l1⊥l2 , ⊙O與l1 , l2都相切,⊙O的半徑為2cm,矩形ABCD的邊AD、AB分別與l1 , l2重合,AB=4 cm,AD=4cm,若⊙O與矩形ABCD沿l1同時向右移動,⊙O的移動速度為3cm/s,矩形ABCD的移動速度為4cm/s,設(shè)移動時間為t(s)
(1)如圖①,連接OA、AC,則∠OAC的度數(shù)為°;
(2)如圖②,兩個圖形移動一段時間后,⊙O到達⊙O1的位置,矩形ABCD到達A1B1C1D1的位置,此時點O1 , A1 , C1恰好在同一直線上,求圓心O移動的距離(即OO1的長);
(3)在移動過程中,圓心O到矩形對角線AC所在直線的距離在不斷變化,設(shè)該距離為d(cm),當(dāng)d<2時,求t的取值范圍(解答時可以利用備用圖畫出相關(guān)示意圖).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com