【題目】在多項式的乘法公式中,完全平方公式是其中重要的一個.
(1)請補全完全平方公式的推導過程:
,
,
.
(2)如圖,將邊長為的正方形分割成Ⅰ、Ⅱ、Ⅲ、Ⅳ四部分,請你結合圖給出完全平方公式的幾何解釋.
(3)用完全平方公式求的值.
【答案】(1)ab,ab,2ab;(2)邊長為a+b的正方形的面積,等于邊長分別為a和b的兩個小正方形面積的和,再加上兩個長為a,寬為b的長方形的面積,見解析;(3)357604.
【解析】
(1)依據多項式乘多項式法則,即可得到結果;
(2)依據邊長為a+b的正方形分割成Ⅰ、Ⅱ、Ⅲ、Ⅳ四部分,即可得到完全平方公式的幾何解釋;
(3)利用完全平方公式,即可得到5982的值.
(1)(a+b)2=(a+b)(a+b)
=a2+ab+ab+b2
=a2+2ab+b2
故答案為:ab,ab,2ab;
(2)邊長為a+b的正方形的面積,等于邊長分別為a和b的兩個小正方形面積的和,再加上兩個長為a,寬為b的長方形的面積.
(3)5982=[(600+(-2)]2
=6002+2×600×(-2)+(-2)2
=360000-2400+4
=357604.
或5982=(600-2)2
=6002-2×600×2+22
=360000-2400+4
=357604.
科目:初中數學 來源: 題型:
【題目】平行四邊形ABCD中,E,F是對角線BD上的兩點, 如果添加一個條件使△ABE≌△CDF,則添加的條件不能是( 。
A. AE=CF B. BE=FD C. BF=DE D. ∠1=∠2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某游客計劃測量這座塑像的高度,(如圖1),由于游客無法直接到達塑像底部,因此該游客計劃借助坡面高度來測量塑像的高度;如圖2,在塑像旁山坡坡腳A處測得塑像頭頂C的仰角為75°,當從A處沿坡面行走10米到達P處時,測得塑像頭頂C的仰角剛好為45°,已知山坡的坡度i=1:3,且O,A,B在同一直線上,求塑像的高度.(側傾器高度忽略不計,結果精確到0.1米,參考數據:cos75°≈0.3,tan75°≈3.7,,,)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題探究,
(1)如圖①,在矩形ABCD中,AB=2AD,P為CD邊上的中點,試比較∠APB和∠ADB的大小關系,并說明理由;
(2)如圖②,在正方形ABCD中,P為CD上任意一點,試問當P點位于何處時∠APB最大?并說明理由;
問題解決
(3)某兒童游樂場的平面圖如圖③所示,場所工作人員想在OD邊上點P處安裝監(jiān)控裝置,用來監(jiān)控OC邊上的AB段,為了讓監(jiān)控效果最佳,必須要求∠APB最大,已知:∠DOC=60°,OA=400米,AB=200米,問在OD邊上是否存在一點P,使得∠APB最大,若存在,請求出此時OP的長和∠APB的度數;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2020年的春節(jié),對于我們來說,有些不一樣,我們不能和小伙伴相約一起玩耍,不能去游樂場放飛自我,也不能和自己的兄弟姐妹一起吃美味的大餐,這么做,是因為我們每一個人都在面臨一個眼睛看不到的敵人,它叫病毒,殘酷的病毒會讓人患上肺炎,人與人的接觸會讓這種疾病快速地傳播開來,嚴重的還會有生命危險,目前我省已經啟動突發(fā)公共衛(wèi)生事件一級應急響應,但我們相信,只要大家一起努力,疫情終有會被戰(zhàn)勝的一天.
在這個不能出門的悠長假期里,某小學隨機對本校部分學生進行“假期中,我在家可以這么做!A.扎實學習、B.快樂游戲、C.經典閱讀、D.分擔勞動、E.樂享健康”的網絡調查,并根據調查結果繪制成如下兩幅不完整的統(tǒng)計圖(若每一位同學只能選擇一項),請根據圖中的信息,回答下列問題.
(1)這次調查的總人數是 人;
(2)請補全條形統(tǒng)計圖,并說明扇形統(tǒng)計圖中E所對應的圓心角是 度;
(3)若學校共有學生的1700人,則選擇C有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,點D在BA的延長線上,CD與⊙O交于另一點E,DE=OB=2,∠D=20°,則弧BC的長度為( 。
A. π B. π C. π D. π
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①所示,直線L:yax10a與x軸負半軸、y軸正半軸分別交于A、B兩點.
(1)當OAOB時,試確定直線L的解析式;
(2)在(1)的條件下,如圖②所示,設Q為AB延長線上一點,作直線OQ,過A、B兩點分別作AMOQ于M,BNOQ于N,若AM8,BN6,求MN的長.
(3)當a取不同的值時,點B在y軸正半軸上運動,分別以OB、AB為邊,點B為直角頂點在第一、二象限內作等腰直角OBF和等腰直角ABE,連接EF交y軸于P點,如圖③,問:當點B在y軸正半軸上運動時,試猜想PB的長是否為定值,若是,請求出其值,若不是,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于(-1,0),(3,0)兩點,則下列說法:①abc<0;②a-b+c=0;③2a+b=0;④2a+c>0;⑤若A(x1,y1),B(x2,y2),C(x3,y3)為拋物線上三點,且-1<x1<x2<1,x3>3,則y2<y1<y3,其中正確的結論是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于實數,若存在坐標同時滿足一次函數和反比例函數,則二次函數為一次函數和反比例函數的“共享”函數.
(1)試判斷(需要寫出判斷過程):一次函數和反比例函數是否存在“共享”函數?若存在,寫出它們的“共享”函數和實數對坐標;
(2)已知整數滿足條件:,并且一次函數與反比例函數存在“共享”函數,求整數的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com