【題目】一次函數(shù)的圖像為直線.
(1)若直線與正比例函數(shù)的圖像平行,且過(guò)點(diǎn)(0,2),求直線的函數(shù)表達(dá)式;
(2)若直線過(guò)點(diǎn)(3,0),且與兩坐標(biāo)軸圍成的三角形面積等于3,求的值.
【答案】(1)y=2x-2;(2)b=2或-2.
【解析】
(1)因?yàn)橹本與直線平行,所以k值相等,即k=2,又因該直線過(guò)點(diǎn)(0,2),所以就有-2=2×0+b,從而可求出b的值,于是可解;
(2)直線與y軸的交點(diǎn)坐標(biāo)是(0,b),與x軸交于(3,0),然后根據(jù)三角形面積公式列方程求解即可.
解:(1)∵直線與直線平行,
∴k=2,
∴直線即為y=2x+b.
∵直線過(guò)點(diǎn)(0,2),
∴-2=2×0+b,
∴b=-2.
∴直線的解析式為y=2x-2.
(2)∵直線與y軸的交點(diǎn)坐標(biāo)是(0,b),與x軸交于(3,0),
∴直線與兩坐標(biāo)軸圍成的三角形面積=.
∴=3,
解得b=2或-2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖一:小明想測(cè)量一棵樹(shù)的高度,在陽(yáng)光下,小明測(cè)得一根與地面垂直、長(zhǎng)為米的竹竿的影長(zhǎng)為米.同時(shí)另一名同學(xué)測(cè)量一棵樹(shù)的高度時(shí),發(fā)現(xiàn)樹(shù)的影子不全落在地面上,有一部分影子落在教學(xué)樓的墻壁上(如圖),墻壁上的影長(zhǎng)為米,落在地面上的影長(zhǎng)為米,則樹(shù)高為多少米.
如圖二:在陽(yáng)光下,小明在某一時(shí)刻測(cè)得與地面垂直、長(zhǎng)為的桿子在地面上的影子長(zhǎng)為,在斜坡上影長(zhǎng)為,他想測(cè)量電線桿的高度,但其影子恰好落在土坡的坡面和地面上,量得,,求電線桿的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】九年級(jí)(1)班全班50名同學(xué)組成五個(gè)不同的興趣愛(ài)好小組,每人都參加且只能參加一個(gè)小組,統(tǒng)計(jì)(不完全)人數(shù)如下表:
編號(hào) | 一 | 二 | 三 | 四 | 五 |
人數(shù) | 15 | 20 | 10 |
已知前面兩個(gè)小組的人數(shù)之比是.
解答下列問(wèn)題:
(1) .
(2)補(bǔ)全條形統(tǒng)計(jì)圖:
(3)若從第一組和第五組中任選兩名同學(xué),求這兩名同學(xué)是同一組的概率.(用樹(shù)狀圖或列表把所有可能都列出來(lái))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC、BC為邊,在Rt△ABC外作兩個(gè)等邊三角形△ACE和△BCF,連接BE、AF分別交AC、BC邊于H、D兩點(diǎn).下列結(jié)論:①AF=BE;②∠AFC=∠EBC;③∠FAE=90°;④BD=FD,其中正確結(jié)論的個(gè)數(shù)是( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形中,,,點(diǎn)在邊上,且,點(diǎn)是邊上一點(diǎn),連接,將四邊形沿折疊,若點(diǎn)的對(duì)稱(chēng)點(diǎn)恰好落在邊上,則的長(zhǎng)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖像與軸交于點(diǎn),與軸交于點(diǎn),且經(jīng)過(guò)點(diǎn).
(1)當(dāng)時(shí);
①求一次函數(shù)的表達(dá)式;
②平分交軸于點(diǎn),求點(diǎn)的坐標(biāo);
(2)若△為等腰三角形,求的值;
(3)若直線也經(jīng)過(guò)點(diǎn),且,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD內(nèi)一點(diǎn)E連接BE、CE,過(guò)C作CF⊥CE與BE延長(zhǎng)線交于點(diǎn)F,連接DF、DE.CE=CF=1,DE=,下列結(jié)論中:①△CBE≌△CDF;②BF⊥DF;③點(diǎn)D到CF的距離為2;④S四邊形DECF=+1.其中正確結(jié)論的個(gè)數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O.
(1)如圖1,E,G分別是OB,OC上的點(diǎn),CE與DG的延長(zhǎng)線相交于點(diǎn)F.若DF⊥CE,求證:OE=OG;
(2)如圖2,H是BC上的點(diǎn),過(guò)點(diǎn)H作EH⊥BC,交線段OB于點(diǎn)E,連結(jié)DH交CE于點(diǎn)F,交OC于點(diǎn)G.若OE=OG,
①求證:∠ODG=∠OCE;
②當(dāng)AB=1時(shí),求HC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=13 cm,AC=20 cm,BC邊上的高為12 cm,則△ABC的面積是
A.126 cm2 或66 cm2B.66 cm2C.120 cm2D.126cm2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com