【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));⑤當(dāng)﹣1<x<3時,y>0,其中正確的序號__________
【答案】①②④
【解析】
①由拋物線對稱軸的位置可得結(jié)論;
②由拋物線對稱軸,可得結(jié)論;
③根據(jù)拋物線的對稱性,可知時,,結(jié)合2a+b=0,可得結(jié)論;
④根據(jù)拋物線的取值列不等式,可得結(jié)論;
⑤由圖可得結(jié)論.
①∵對稱軸在y軸右側(cè),
∴ab<0,故正確;
②∵對稱軸,
∴ 2a+b=0,故正確;
③當(dāng)時,,
又∵2a+b=0,b=-2a
∴,故結(jié)論錯誤;
④由圖可知當(dāng)m=1時,有最大值a+b+c,
∴am2+bm+c≤a+b+c,即a+b≥m(am+b),故正確;
⑤如圖,當(dāng)﹣1<x<3時,y不只大于0,故結(jié)論錯誤.
故答案為:①②④.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,對角線、相交于點.,,點為上一動點,點以的速度從點出發(fā)沿向點運動.設(shè)運動時間為,當(dāng)________時,為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與反比例函數(shù)的圖像在第一象限有一個公共點,其橫坐標(biāo)為1,則一次函數(shù)的圖像可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的箱子里有四張外形相同的卡片卡片上分別標(biāo)有數(shù)字﹣1,1,3,5.摸出一張后,記下數(shù)字,再放回,搖勻后再摸出一張,記下數(shù)字.以第一次得到的放字為橫坐標(biāo),第二次得到的數(shù)字為縱坐標(biāo),得到一個點則這個點.恰好在直線y=﹣x+4上的概率是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=+b(a、b為常數(shù)且a≠0)中,當(dāng)x=2時,y=4;當(dāng)x=﹣1時,y=1.請對該函數(shù)及其圖象進行如下探究:
(1)求該函數(shù)的解析式,并直接寫出該函數(shù)自變量x的取值范圍;
(2)請在下列直角坐標(biāo)系中畫出該函數(shù)的圖象;
(3)請你在上方直角坐標(biāo)系中畫出函數(shù)y=2x的圖象,結(jié)合上述函數(shù)的圖象,寫出不等式+b≤2x的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某家具生產(chǎn)廠生產(chǎn)某種配套桌椅(一張桌子,兩把椅子),已知每塊板材可制作桌子1張或椅子4把,現(xiàn)計劃用120塊這種板材生產(chǎn)一批桌椅(不考慮板材的損耗),設(shè)用x塊板材做桌子,用y塊板材做椅子,則下列方程組正確的是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家所在居民樓的對面有一座大廈AB,高為74米,為測量居民樓與大廈之間的距離,小明從自己家的窗戶C處測得大廈頂部A的仰角為37°,大廈底部B的俯角為48°.
(1)求∠ACB的度數(shù);
(2)求小明家所在居民樓與大廈之間的距離.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈,sin48°≈,cos48°≈,tan48°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△ABC的直角邊長為4,以A為圓心,直角邊AB為半徑作弧BC1,交斜邊AC于點C1,C1B1⊥AB于點B1,設(shè)弧BC1,C1B1,B1B圍成的陰影部分的面積為S1,然后以A為圓心,AB1為半徑作弧B1C2,交斜邊AC于點C2,C2B2⊥AB于點B2,設(shè)弧B1C2,C2B2,B2B1圍成的陰影部分的面積為S2,按此規(guī)律繼續(xù)作下去,得到的陰影部分的面積S3=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出
(1)如圖①,在△ABC中,AB=AC=10,BC=12,點O是△ABC的外接圓的圓心,則OB的長為
問題探究
(2)如圖②,已知矩形ABCD,AB=4,AD=6,點E為AD的中點,以BC為直徑作半圓O,點P為半圓O上一動點,求E、P之間的最大距離;
問題解決
(3)某地有一塊如圖③所示的果園,果園是由四邊形ABCD和弦CB與其所對的劣弧場地組成的,果園主人現(xiàn)要從入口D到上的一點P修建一條筆直的小路DP.已知AD∥BC,∠ADB=45°,BD=120米,BC=160米,過弦BC的中點E作EF⊥BC交于點F,又測得EF=40米.修建小路平均每米需要40元(小路寬度不計),不考慮其他因素,請你根據(jù)以上信息,幫助果園主人計算修建這條小路最多要花費多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com