【題目】甲、乙兩個(gè)工程隊(duì)分別同時(shí)開(kāi)挖兩段河渠,所挖河渠的長(zhǎng)度y(m)與挖掘時(shí)間x(h)之間的關(guān)系如圖所示,請(qǐng)根據(jù)圖象所提供的信息解答下列問(wèn)題:

(1)乙隊(duì)開(kāi)挖到30m時(shí),用了_____ h. 開(kāi)挖6h時(shí)甲隊(duì)比乙隊(duì)多挖了____ m;

(2)請(qǐng)你求出:

①甲隊(duì)在的時(shí)段內(nèi),yx之間的函數(shù)關(guān)系式;

②乙隊(duì)在的時(shí)段內(nèi),yx之間的函數(shù)關(guān)系式;

(3)當(dāng)x 為何值時(shí),甲、 乙兩隊(duì)在 施工過(guò)程中所挖河渠的長(zhǎng)度相等?

【答案】1210;(2)①y=10x,②y=5x+20;(3x4h時(shí),甲、乙兩隊(duì)所挖的河渠長(zhǎng)度相等.

【解析】

1)此題只要認(rèn)真讀圖,可從中找到甲、乙兩隊(duì)各組數(shù)據(jù);
2)根據(jù)圖中的信息利用待定系數(shù)法即可確定函數(shù)關(guān)系式;
3)利用(2)中的函數(shù)關(guān)系式可以解決問(wèn)題.

解:(1)依題意得乙隊(duì)開(kāi)挖到30m時(shí),用了2h
開(kāi)挖6h時(shí)甲隊(duì)比乙隊(duì)多挖了60-50=10m;
2)①設(shè)甲隊(duì)在0≤x≤6的時(shí)段內(nèi)yx之間的函數(shù)關(guān)系式y=k1x,
由圖可知,函數(shù)圖象過(guò)點(diǎn)(6,60),
6k1=60,
解得k1=10,
y=10x,
②設(shè)乙隊(duì)在2≤x≤6的時(shí)段內(nèi)yx之間的函數(shù)關(guān)系式為y=k2x+b,
由圖可知,函數(shù)圖象過(guò)點(diǎn)(2,30)、(6,50),
,
解得
y=5x+20;
3)由題意,得10x=5x+20
解得x=4h).
∴當(dāng)x4h時(shí),甲、乙兩隊(duì)所挖的河渠長(zhǎng)度相等.

故答案為:(12,10;(2)①y=10x,②y=5x+20;(3x4h時(shí),甲、乙兩隊(duì)所挖的河渠長(zhǎng)度相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=ax2+ca≠0)經(jīng)過(guò)C2,0),D0,﹣1)兩點(diǎn),并與直線(xiàn)y=kx交于A、B兩點(diǎn),直線(xiàn)l過(guò)點(diǎn)E0,﹣2)且平行于x軸,過(guò)AB兩點(diǎn)分別作直線(xiàn)l的垂線(xiàn),垂足分別為點(diǎn)MN

1)求此拋物線(xiàn)的解析式;

2)求證:AO=AM;

3)探究:

當(dāng)k=0時(shí),直線(xiàn)y=kxx軸重合,求出此時(shí)的值;

試說(shuō)明無(wú)論k取何值,的值都等于同一個(gè)常數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D,E分別在AB,BC上,∠EAD=∠EDA,點(diǎn)F為DE的延長(zhǎng)線(xiàn)與AC的延長(zhǎng)線(xiàn)的交點(diǎn).

(1)求證:DE=EF;

(2)判斷BD和CF的數(shù)量關(guān)系,并說(shuō)明理由;

(3)若AB=3,AE=,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,ABC是等邊三角形,P是三角形內(nèi)一點(diǎn),PDABPEBC,PFAC,若ABC的周長(zhǎng)為18,則PD+PE+PF=( 。

A. 18B. 9

C. 6D. 條件不夠,不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊿中,,點(diǎn)分別在 邊上,且, .

⑴.求證:⊿是等腰三角形;

⑵.當(dāng) 時(shí),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,有一個(gè)△ABC,頂點(diǎn),,.

1)畫(huà)出△ABC 關(guān)于 y 軸的對(duì)稱(chēng)圖形(不寫(xiě)畫(huà)法)

點(diǎn)A 關(guān)于 x 軸對(duì)稱(chēng)的點(diǎn)坐標(biāo)為_____________;

點(diǎn) B 關(guān)于 y 軸對(duì)稱(chēng)的點(diǎn)坐標(biāo)為_____________;

點(diǎn) C 關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)坐標(biāo)為_____________;

2)若網(wǎng)格上的每個(gè)小正方形的邊長(zhǎng)為 1,求△ABC 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在彈性限度內(nèi),彈簧掛上物體后會(huì)伸長(zhǎng),測(cè)得一彈簧的長(zhǎng)度y(cm)與所掛物體的質(zhì)量x(kg)之間的關(guān)系如下表,下列說(shuō)法不正確的是(  )

x/kg

0

1

2

3

4

5

y/cm

20

20.5

21

21.5

22

22.5

A. xy都是變量,且x是自變量,yx的函數(shù)

B. 彈簧不掛重物時(shí)的長(zhǎng)度為0 cm

C. 物體質(zhì)量每增加1 kg,彈簧長(zhǎng)度y增加0.5 cm

D. 所掛物體質(zhì)量為7 kg時(shí),彈簧長(zhǎng)度為23.5 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們新定義一種三角形:兩邊平方和等于第三邊平方的兩倍的三角形叫做奇異三角形.

1)根據(jù)奇異三角形的定義,請(qǐng)你判斷命題等邊三角形一定是奇異三角形是真命題還是假命題?

2)在Rt△ABC中,∠ACB=90°,AB=cAC=b,BC=a,且ba,若Rt△ABC是奇異三角形,求abc;

3)如圖,AB⊙O的直徑,點(diǎn)C⊙O上一點(diǎn)(不與點(diǎn)A,B重合),D是半圓的中點(diǎn),C,D在直徑AB的兩側(cè),若在⊙O內(nèi)存在點(diǎn)E,使AE=ADCB=CE

求證:△ACE是奇異三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】不透明的口袋里裝有紅、黃、藍(lán)三種顏色的小球(除顏色不同外,其它都一樣),其中紅球2個(gè),藍(lán)球1個(gè),現(xiàn)在從中任意摸出一個(gè)紅球的概率為

(1)求袋中黃球的個(gè)數(shù);

(2)第一次摸出一個(gè)球(不放回),第二次再摸出一個(gè)球,請(qǐng)用樹(shù)狀圖或列表法求兩次摸出的都是紅球的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案