【題目】甲、乙兩個(gè)工程隊(duì)分別同時(shí)開(kāi)挖兩段河渠,所挖河渠的長(zhǎng)度y(m)與挖掘時(shí)間x(h)之間的關(guān)系如圖所示,請(qǐng)根據(jù)圖象所提供的信息解答下列問(wèn)題:
(1)乙隊(duì)開(kāi)挖到30m時(shí),用了_____ h. 開(kāi)挖6h時(shí)甲隊(duì)比乙隊(duì)多挖了____ m;
(2)請(qǐng)你求出:
①甲隊(duì)在的時(shí)段內(nèi),y與x之間的函數(shù)關(guān)系式;
②乙隊(duì)在的時(shí)段內(nèi),y與x之間的函數(shù)關(guān)系式;
(3)當(dāng)x 為何值時(shí),甲、 乙兩隊(duì)在 施工過(guò)程中所挖河渠的長(zhǎng)度相等?
【答案】(1)2,10;(2)①y=10x,②y=5x+20;(3)x為4h時(shí),甲、乙兩隊(duì)所挖的河渠長(zhǎng)度相等.
【解析】
(1)此題只要認(rèn)真讀圖,可從中找到甲、乙兩隊(duì)各組數(shù)據(jù);
(2)根據(jù)圖中的信息利用待定系數(shù)法即可確定函數(shù)關(guān)系式;
(3)利用(2)中的函數(shù)關(guān)系式可以解決問(wèn)題.
解:(1)依題意得乙隊(duì)開(kāi)挖到30m時(shí),用了2h,
開(kāi)挖6h時(shí)甲隊(duì)比乙隊(duì)多挖了60-50=10m;
(2)①設(shè)甲隊(duì)在0≤x≤6的時(shí)段內(nèi)y與x之間的函數(shù)關(guān)系式y=k1x,
由圖可知,函數(shù)圖象過(guò)點(diǎn)(6,60),
∴6k1=60,
解得k1=10,
∴y=10x,
②設(shè)乙隊(duì)在2≤x≤6的時(shí)段內(nèi)y與x之間的函數(shù)關(guān)系式為y=k2x+b,
由圖可知,函數(shù)圖象過(guò)點(diǎn)(2,30)、(6,50),
∴ ,
解得 ,
∴y=5x+20;
(3)由題意,得10x=5x+20,
解得x=4(h).
∴當(dāng)x為4h時(shí),甲、乙兩隊(duì)所挖的河渠長(zhǎng)度相等.
故答案為:(1)2,10;(2)①y=10x,②y=5x+20;(3)x為4h時(shí),甲、乙兩隊(duì)所挖的河渠長(zhǎng)度相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2+c(a≠0)經(jīng)過(guò)C(2,0),D(0,﹣1)兩點(diǎn),并與直線(xiàn)y=kx交于A、B兩點(diǎn),直線(xiàn)l過(guò)點(diǎn)E(0,﹣2)且平行于x軸,過(guò)A、B兩點(diǎn)分別作直線(xiàn)l的垂線(xiàn),垂足分別為點(diǎn)M、N.
(1)求此拋物線(xiàn)的解析式;
(2)求證:AO=AM;
(3)探究:
①當(dāng)k=0時(shí),直線(xiàn)y=kx與x軸重合,求出此時(shí)的值;
②試說(shuō)明無(wú)論k取何值,的值都等于同一個(gè)常數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D,E分別在AB,BC上,∠EAD=∠EDA,點(diǎn)F為DE的延長(zhǎng)線(xiàn)與AC的延長(zhǎng)線(xiàn)的交點(diǎn).
(1)求證:DE=EF;
(2)判斷BD和CF的數(shù)量關(guān)系,并說(shuō)明理由;
(3)若AB=3,AE=,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,△ABC是等邊三角形,P是三角形內(nèi)一點(diǎn),PD∥AB,PE∥BC,PF∥AC,若△ABC的周長(zhǎng)為18,則PD+PE+PF=( 。
A. 18B. 9
C. 6D. 條件不夠,不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊿中,,點(diǎn)分別在 邊上,且, .
⑴.求證:⊿是等腰三角形;
⑵.當(dāng) 時(shí),求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,有一個(gè)△ABC,頂點(diǎn),,.
(1)畫(huà)出△ABC 關(guān)于 y 軸的對(duì)稱(chēng)圖形(不寫(xiě)畫(huà)法)
點(diǎn)A 關(guān)于 x 軸對(duì)稱(chēng)的點(diǎn)坐標(biāo)為_____________;
點(diǎn) B 關(guān)于 y 軸對(duì)稱(chēng)的點(diǎn)坐標(biāo)為_____________;
點(diǎn) C 關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)坐標(biāo)為_____________;
(2)若網(wǎng)格上的每個(gè)小正方形的邊長(zhǎng)為 1,求△ABC 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在彈性限度內(nèi),彈簧掛上物體后會(huì)伸長(zhǎng),測(cè)得一彈簧的長(zhǎng)度y(cm)與所掛物體的質(zhì)量x(kg)之間的關(guān)系如下表,下列說(shuō)法不正確的是( )
x/kg | 0 | 1 | 2 | 3 | 4 | 5 |
y/cm | 20 | 20.5 | 21 | 21.5 | 22 | 22.5 |
A. x與y都是變量,且x是自變量,y是x的函數(shù)
B. 彈簧不掛重物時(shí)的長(zhǎng)度為0 cm
C. 物體質(zhì)量每增加1 kg,彈簧長(zhǎng)度y增加0.5 cm
D. 所掛物體質(zhì)量為7 kg時(shí),彈簧長(zhǎng)度為23.5 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們新定義一種三角形:兩邊平方和等于第三邊平方的兩倍的三角形叫做奇異三角形.
(1)根據(jù)“奇異三角形”的定義,請(qǐng)你判斷命題“等邊三角形一定是奇異三角形”是真命題還是假命題?
(2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇異三角形,求a:b:c;
(3)如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn)(不與點(diǎn)A,B重合),D是半圓的中點(diǎn),C,D在直徑AB的兩側(cè),若在⊙O內(nèi)存在點(diǎn)E,使AE=AD,CB=CE.
求證:△ACE是奇異三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】不透明的口袋里裝有紅、黃、藍(lán)三種顏色的小球(除顏色不同外,其它都一樣),其中紅球2個(gè),藍(lán)球1個(gè),現(xiàn)在從中任意摸出一個(gè)紅球的概率為.
(1)求袋中黃球的個(gè)數(shù);
(2)第一次摸出一個(gè)球(不放回),第二次再摸出一個(gè)球,請(qǐng)用樹(shù)狀圖或列表法求兩次摸出的都是紅球的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com