【題目】把方程3x2+x5x2整理成一元二次方程的一般形式為_____

【答案】3x24x+20

【解析】

通過移項合并同類項,整理為一般形式即可.

解:方程整理得:3x24x+20

故答案為:3x24x+20

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水庫大壩的橫截面是如圖所示的四邊形BACD,期中ABCD.瞭望臺PC正前方水面上有兩艘漁船M、N,觀察員在瞭望臺頂端P處觀測漁船M的俯角,觀測漁船N在俯角,已知NM所在直線與PC所在直線垂直,垂足為點E,PE長為30米.

(1)求兩漁船MN之間的距離(結(jié)果精確到1米);

(2)已知壩高24米,壩長100米,背水坡AD的坡度.為提高大壩防洪能力,某施工隊在大壩的背水坡填筑土石方加固,加固后壩定加寬3米,背水坡FH的坡度為,施工12天后,為盡快完成加固任務(wù),施工隊增加了機械設(shè)備,工作效率提高到原來的1.5倍,結(jié)果比原計劃提前20天完成加固任務(wù),施工隊原計劃平均每天填筑土石方多少立方米?

(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。

A.直徑是弦,弦是直徑

B.圓有無數(shù)條對稱軸

C.無論過圓內(nèi)哪一點,都只能作一條直徑

D.度數(shù)相等的弧是等弧

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系O中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2,…, 按圖所示的方式放置.點A1、A2、A3,…和點B1、B2、B3,…分別在直線軸上.已知C1(1,-1),C2, ),則點A3的坐標是________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,現(xiàn)有一張邊長為4的正方形紙片ABCD,點P為正方形AD邊上的一點(不與點A、點D重合)將正方形紙片折疊,使點B落在P處,點C落在G處,PG交DC于H,折痕為EF,連接BP、BH.
(1)求證:∠APB=∠BPH;
(2)當(dāng)點P在邊AD上移動時,△PDH的周長是否發(fā)生變化?并證明你的結(jié)論;
(3)設(shè)AP為x,四邊形EFGP的面積為S,求出S與x的函數(shù)關(guān)系式,試問S是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2015年某企業(yè)按餐廚垃圾處理費50/噸、建筑垃圾處理費20/噸的收費標準,共支付餐廚和建筑垃圾處理費7000元.從2016年元月起,收費標準上調(diào)為:餐廚垃圾處理費120/噸,建筑垃圾處理費40/噸.若該企業(yè)2016年處理的這兩種垃圾數(shù)量與2015年相比沒有變化,就要多支付垃圾處理費8600元.

1)該企業(yè)2015年處理的餐廚垃圾和建筑垃圾各多少噸?

2)該企業(yè)計劃2016年將上述兩種垃圾處理總量減少到200噸,且建筑垃圾處理量不超過餐廚垃圾處理量的3倍,則2016年該企業(yè)最少需要支付這兩種垃圾處理費共多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地距離300km,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地.如圖,線段OA表示貨車離甲地的距離y(km)與時間x(h)之間的函數(shù)關(guān)系,折線BCDE表示轎車離甲地的距離y(km)與時間x(h)之間的函數(shù)關(guān)系,根據(jù)圖像,解答下列問題:
(1)線段CD表示轎車在中途停留了h;
(2)求轎車從甲地出發(fā)后經(jīng)過多長時間追上貨車.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請根據(jù)圖中提供的信息,回答下列問題:

一個水瓶與一個水杯分別是多少元?

(2)甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和20個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某條道路上通行車輛限速為60千米/時,在離道路50米的點P處建一個監(jiān)測點,道路AB段為檢測區(qū)(如圖).在△ABP中,已知∠PAB=30°,∠PBA=45°,一輛轎車通過AB段的時間8.1秒,請判斷該車是否超速?(參考數(shù)據(jù): ≈1.41, ≈1.73,60千米/時=米/秒)

查看答案和解析>>

同步練習(xí)冊答案