已知在梯形ABCD中,AD∥BC,AB=CD,∠B=60°,AD=3cm,梯形ABCD的周長為18cm,則BC的長為________.

7cm
分析:過D作DE∥AB交BC于E,得出平行四邊形ABED和等邊三角形DEC,推出BE=AD=3cm,CE=DC=AB,設(shè)AB=DC=CE=xcm,根據(jù)梯形ABCD的周長為18cm得出方程3x+3+3=18,求出方程的解即可.
解答:
解:過D作DE∥AB交BC于E,
則∠DEC=∠B=60°,
∵AD∥BC,
∴四邊形ABED是平行四邊形,
∴AB=DE=DC,AD=BE=3cm,
∴∠DEC是等邊三角形,
∴DE=DC=CE,
設(shè)AB=DC=CE=xcm,
∵梯形ABCD的周長為18cm,
∴3x+3+3=18,
x=4,
∴BC=3cm+4cm=7cm,
故答案為:7cm.
點評:本題考查了等腰梯形性質(zhì),平行四邊形的性質(zhì)和判定,等邊三角形的性質(zhì)和判定,解此題的關(guān)鍵是能把等腰梯形轉(zhuǎn)化成平行四邊形和等邊三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知在梯形ABCD中,AB∥DC,AD=2PD,PC=2PB,∠ADP=∠PCD,PD=PC=4,如圖1.
(1)求證:PD∥BC;
(2)若點Q在線段PB上運動,與點P不重合,連接CQ并延長交DP的延長線于點O,如圖2,設(shè)PQ=x,DO=y,求y與x的函數(shù)關(guān)系式,并寫出它的定義域;
(3)若點M在線段PA上運動,與點P不重合,連接CM交DP于點N,當△PNM是等腰三角形時,求PM的值.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,已知在梯形ABCD中,AD∥BC,AB=DC,對角線AC和BD相交于點O,E是BC邊上一個動點(E點不與B、C兩點重合),EF∥BD交AC于點F,EG∥AC交BD于點G.
(1)求證:四邊形EFOG的周長等于2 OB;
(2)請你將上述題目的條件“梯形ABCD中,AD∥BC,AB=DC”改為另一種四邊形,其他條件不變,使得結(jié)論“四邊形EFOG的周長等于2 OB”仍成立,并將改編后的題目畫出圖形,寫出已知、求證、不必證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知在梯形ABCD中,AD∥BC,AD<BC,且BC=6,AB=DC=4,點E是AB的中點.
(1)如圖,P為BC上的一點,且BP=2.求證:△BEP∽△CPD;
(2)如果點P在BC邊上移動(點P與點B、C不重合),且滿足∠EPF=∠C,PF交直線CD于點F,同時交直線AD于點M,那么
①當點F在線段CD的延長線上時,設(shè)BP=x,DF=y,求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)的定義域精英家教網(wǎng);
②當S△DMF=
94
S△BEP
時,求BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在梯形ABCD中,AB∥CD,BC⊥AB,且AD⊥BD,CD=2,sinA=
23
.求AB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知在梯形ABCD中,AD∥BC,∠A=90°,∠D=150°,CD=8,則AB=
4
4

查看答案和解析>>

同步練習(xí)冊答案