【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個動點,且滿足∠PAB=∠PBC,則線段CP長的最小值為(
A.
B.2
C.
D.

【答案】B
【解析】解:∵∠ABC=90°, ∴∠ABP+∠PBC=90°,
∵∠PAB=∠PBC,
∴∠BAP+∠ABP=90°,
∴∠APB=90°,
∴OP=OA=OB(直角三角形斜邊中線等于斜邊一半),
∴點P在以AB為直徑的⊙O上,連接OC交⊙O于點P,此時PC最小,
在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,
∴OC= =5,
∴PC=OC﹣OP=5﹣3=2.
∴PC最小值為2.
故選B.

首先證明點P在以AB為直徑的⊙O上,連接OC與⊙O交于點P,此時PC最小,利用勾股定理求出OC即可解決問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A( , )和B(4,m),點P是線段AB上異于A、B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.

(1)求拋物線的解析式;
(2)是否存在這樣的P點,使線段PC的長有最大值?若存在,求出這個最大值;若不存在,請說明理由;
(3)求△PAC為直角三角形時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點A(O,1),B(1,2),點P在軸上運動,當(dāng)點P到A、B兩點的距離之差的絕對值最大時,該點記為點P1,當(dāng)點P到A、B兩點的距離之和最小時,該點記為點P2,以P1P2為邊長的正方形的面積為

A. 1 B. C. D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料: 當(dāng)前,中國互聯(lián)網(wǎng)產(chǎn)業(yè)發(fā)展迅速,互聯(lián)網(wǎng)教育市場增長率位居全行業(yè)前列.以下是根據(jù)某媒體發(fā)布的2012﹣2015年互聯(lián)網(wǎng)教育市場規(guī)模的相關(guān)數(shù)據(jù),繪制的統(tǒng)計圖表的一部分.

(1)2015年互聯(lián)網(wǎng)教育市場規(guī)模約是億元(結(jié)果精確到1億元),并補全條形統(tǒng)計圖;
(2)截至2015年底,約有5億網(wǎng)民使用互聯(lián)網(wǎng)進行學(xué)習(xí),互聯(lián)網(wǎng)學(xué)習(xí)用戶的年齡分布如圖所示,請你補全扇形統(tǒng)計圖 , 并估計7﹣17歲年齡段有億網(wǎng)民通過互聯(lián)網(wǎng)進行學(xué)習(xí);
(3)根據(jù)以上材料,寫出你的思考、感受或建議(一條即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,CH是外角∠ACD的平分線,BH是∠ABC的平分線,∠A =58°,求∠H的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠A=30°,BC=2 ,以直角邊AC為直徑作⊙O交AB于點D,則圖中陰影部分的面積是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣5(a≠0)經(jīng)過點A(4,﹣5),與x軸的負(fù)半軸交于點B,與y軸交于點C,且OC=5OB,拋物線的頂點為點D.

(1)求這條拋物線的表達式;
(2)連結(jié)AB、BC、CD、DA,求四邊形ABCD的面積;
(3)如果點E在y軸的正半軸上,且∠BEO=∠ABC,求點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點M的坐標(biāo)為(3,﹣2),線段AB的位置如圖所示,其中點A的坐標(biāo)為(7,3),點B的坐標(biāo)為(1,4).

(1)將線段AB平移可以得到線段MN,其中點A的對應(yīng)點為M(3,﹣2),點B的對應(yīng)點為N,則點N的坐標(biāo)為   

(2)在(1)的條件下,若點C的坐標(biāo)為(4,0),請在圖中描出點N并順次連接BC,CM,MN,NB,然后求出四邊形BCMN的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣(2m+1)+( m2﹣1).
(1)求證:不論m取什么實數(shù),該二次函數(shù)圖象與x軸總有兩個交點;
(2)若該二次函數(shù)圖象經(jīng)過點(2m﹣2,﹣2m﹣1),求該二次函數(shù)的表達式.

查看答案和解析>>

同步練習(xí)冊答案