如圖, 等腰梯形ABCD中,AB=15,AD=20,∠C=30º.點M、N同時以相同速度分別從點A、點D開始在AB、AD(包括端點)上運動.
(1)設ND的長為x,用x表示出點N到AB的距離,并寫出x的取值范圍.
(2)當五邊形BCDNM面積最小時,請判斷△AMN的形狀.

解:(1)過點N作BA的垂線NP,交BA的延長線于點P.  

由已知,AM=x,AN=20-x.
∵ 四邊形ABCD是等腰梯形,AB∥CD,∠D=∠C=30º,
∴ ∠PAN=∠D=30º.
在Rt△APN中,PN=(20-x),
即點N到AB的距離為(20-x).        
∵ 點N在AD上,0≤x≤20,點M在AB上,0≤x≤15,
∴ x的取值范圍是 0≤x≤15.              
(2)根據(jù)(1),S△AMNAM•NP=x(20-x)==-(x-10)+25.  
∴ 當x=10時,S△AMN有最大值.
又∵ S五邊形BCDNM=S梯形-S△AMN,且S梯形為定值,
∴ 當x=10時,S五邊形BCDNM有最小值.  
當x=10時,即ND=AM=10,AN=AD-ND=10,即AM=AN.
則當五邊形BCDNM面積最小時,△AMN為等腰三角形. 

解析

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

14、如圖,等腰梯形ABCD中,AB∥CD,∠A=60°,BD平分∠ABC,若梯形ABCD的周長為40cm,則CD的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,等腰梯形ABCD中,AB∥CD,AB=4,CD=9,∠C=60°.
(1)求AD的長;
(2)若動點P從點C出發(fā)沿CD方向向終點D運動(如圖②),在P點運動的過程中,△ABP的面積改變了嗎?若改變,請說明理由;若沒有改變,那么△ABP的面積為
 
;
(3)在(2)的條件下,過B作BH⊥AP于H(如圖③),若BH=2
2
,則AP=
 
;
(4)在(2)的條件下,若動點Q同時以相同速度從點D出發(fā)沿DA方向向終點A運動,其中一個動點到達終點時,另一個動點也隨之停止運動,過點Q作QM∥CD交BC于M(如圖④),探究:四邊形PDQM可能為菱形嗎?若可能,請求出BM的長;若不可能,請說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,等腰梯形OABC,OC=2,AB=6,∠AOC=120°,以O為圓心,OC為半徑作⊙O,交OA于點D,動點P以每秒1個單位的速度從點A出發(fā)向點O移動,過點P作PE∥AB,交BC于點E.設P點運動的時間為t(秒).
(1)求OA的長;
(2)當t為何值時,PE與⊙O相切;
(3)直接寫出PE與⊙O有兩個公共點時t的范圍,并計算,當PE與⊙O相切時,四邊形PECO與⊙O重疊部分面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,等腰梯形ABCD,BC∥AD,AB=DC,BC=2AD=4cm,BD⊥CD,AC⊥AB,BC邊的中點為E.
(1)判斷△ADE的形狀(簡述理由),并求其周長.
(2)求AB的長.
(3)DE是否垂直平分AC?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:中華題王 數(shù)學 九年級上 (北師大版) 北師大版 題型:013

如圖,等腰梯形AB-CD中,AD∠BC,AD=5,AB=6,BC=8,且AB∥DE,△DEC的周長是

[  ]

A.3

B.12

C.15

D.19

查看答案和解析>>

同步練習冊答案