如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3交x軸于A(﹣1,0)和B(5,0)兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)D是線段OB上一動(dòng)點(diǎn),連接CD,將線段CD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到線段DE,過點(diǎn)E作直線l⊥x軸于H,過點(diǎn)C作CF⊥l于F.
(1)求拋物線解析式;
(2)如圖2,當(dāng)點(diǎn)F恰好在拋物線上時(shí),求線段OD的長;
(3)在(2)的條件下:
①連接DF,求tan∠FDE的值;
②試探究在直線l上,是否存在點(diǎn)G,使∠EDG=45°?若存在,請(qǐng)直接寫出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說明理由.
【考點(diǎn)】二次函數(shù)綜合題.
【專題】壓軸題.
【分析】(1)利用待定系數(shù)法求得即可;
(2)根據(jù)C的縱坐標(biāo)求得F的坐標(biāo),然后通過△OCD≌△HDE,得出DH=OC=3,即可求得OD的長;
(3)①先確定C、D、E、F四點(diǎn)共圓,根據(jù)圓周角定理求得∠ECF=∠EDF,由于tan∠ECF===,即可求得tan∠FDE=;
②連接CE,得出△CDE是等腰直角三角形,得出∠CED=45°,過D點(diǎn)作DG1∥CE,交直線l于G1,過D點(diǎn)作DG2⊥CE,交直線l于G2,則∠EDG1=45°,∠EDG2=45°,求得直線CE的解析式為y=﹣x+3,即可設(shè)出直線DG1的解析式為y=﹣x+m,直線DG2的解析式為y=2x+n,把D的坐標(biāo)代入即可求得m、n,從而求得解析式,進(jìn)而求得G的坐標(biāo).
【解答】解:(1)如圖1,∵拋物線y=ax2+bx+3交x軸于A(﹣1,0)和B(5,0)兩點(diǎn),
∴,
解得.
∴拋物線解析式為y=﹣x2+x+3;
(2)如圖2,∵點(diǎn)F恰好在拋物線上,C(0,3),
∴F的縱坐標(biāo)為3,
把y=3代入y=﹣x2+x+3得,3=﹣x2+x+3;
解得x=0或x=4,
∴F(4,3)
∴OH=4,
∵∠CDE=90°,
∴∠ODC+∠EDH=90°,
∴∠OCD=∠EDH,
在△OCD和△HDE中,
,
∴△OCD≌△HDE(AAS),
∴DH=OC=3,
∴OD=4﹣3=1;
(3)①如圖3,連接CE,
△OCD≌△HDE,
∴HE=OD=1,
∵BF=OC=3,
∴EF=3﹣1=2,
∵∠CDE=∠CFE=90°,
∴C、D、E、F四點(diǎn)共圓,
∴∠ECF=∠EDF,
在RT△CEF中,∵CF=OH=4,
∴tan∠ECF===,
∴tan∠FDE=;
②如圖4連接CE,
∵CD=DE,∠CDE=90°,
∴∠CED=45°,
過D點(diǎn)作DG1∥CE,交直線l于G1,過D點(diǎn)作DG2⊥CE,交直線l于G2,則∠EDG1=45°,∠EDG2=45°
∵EH=1,OH=4,
∴E(4,1),
∵C(0,3),
∴直線CE的解析式為y=﹣x+3,
設(shè)直線DG1的解析式為y=﹣x+m,
∵D(1,0),
∴0=﹣×1+m,解得m=,
∴直線DG1的解析式為y=﹣x+,
當(dāng)x=4時(shí),y=﹣+=﹣,
∴G1(4,﹣);
設(shè)直線DG2的解析式為y=2x+n,
∵D(1,0),
∴0=2×1+n,解得n=﹣2,
∴直線DG2的解析式為y=2x﹣2,
當(dāng)x=4時(shí),y=2×4﹣2=6,
∴G2(4,6);
綜上,在直線l上,是否存在點(diǎn)G,使∠EDG=45°,點(diǎn)G的坐標(biāo)為(4,﹣)或(4,6).
【點(diǎn)評(píng)】本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
.如圖所示,將△ABC繞點(diǎn)A按逆時(shí)針旋轉(zhuǎn)30°后,得到△ADC′,則∠ABD的度數(shù)是( 。
A.30° B.45° C.60° D.75°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,△ABC與△ABD中,AD與BC相交于O點(diǎn),∠1=∠2,請(qǐng)你添加一個(gè)條件(不再添加其它線段,不再標(biāo)注或使用其他字母),使AC=BD,并給出證明.
你添加的條件是: .
證明: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某鞋店有A、B、C、D四款運(yùn)動(dòng)鞋,元旦期間搞“買一送一”促銷活動(dòng),用樹狀圖或表格求隨機(jī)選取兩款不同的運(yùn)動(dòng)鞋,恰好選中A、C兩款的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,下列能判定AB∥CD的條件有( 。﹤(gè).
(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.
A.1 B.2 C.3 D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com