【題目】某城市自來水收費實行階梯水價,收費標準如下表所示:
(1)某用戶四月份用水量為16噸,需交水費為多少元?
(2)某用戶五月份交水費50元,所用水量為多少噸?
(3)某用戶六月份用水量為a噸,需要交水費為多少元?
【答案】
(1)解:∵12<16<18,
∴2×12+2.5×(16﹣12)
=24+10
=34(元),
答:四月份用水量為16噸,需交水費為34元
(2)解:設(shè)五月份所用水量為x噸,依據(jù)題意可得:
2×12+6×2.5+(x﹣18)×3=50,
解得;x=21 ,
答:五月份所有水量為21 噸
(3)解:①當a≤12時,需交水費2a元;
②當12<a≤18時,需交水費,2×12+(a﹣12)×2.5=(2.5a﹣6)元,
③當a>18時,需交水費2×12+6×2.5+(a﹣18)×3=(3a﹣15)元
【解析】根據(jù)題意可知12<16<18,再根據(jù)表中水費的單價即可求出所交水費。
(2)通過計算可知122+62.5=39元,而50>39,可知五月份用水量超過18噸,設(shè)未知數(shù)建立方程求解即可。
(3)根據(jù)已知某用戶六月份用水量為a噸,因此分三種情況①當a≤12時;當12<a≤18時;當a>18時,求出需要交的水費。
【考點精析】解答此題的關(guān)鍵在于理解解一元一次方程的步驟的相關(guān)知識,掌握先去分母再括號,移項變號要記牢.同類各項去合并,系數(shù)化“1”還沒好.求得未知須檢驗,回代值等才算了.
科目:初中數(shù)學 來源: 題型:
【題目】在等腰△ABC中,
(1)如圖1,若△ABC為等邊三角形,D為線段BC中點,線段AD關(guān)于直線AB的對稱線段為線段AE,連接DE,則∠BDE的度數(shù)為___________;
(2)若△ABC為等邊三角形,點D為線段BC上一動點(不與B,C重合),連接AD并將線段AD繞點D逆時針旋轉(zhuǎn)60°得到線段DE,連接BE.
①根據(jù)題意在圖2中補全圖形;
②小玉通過觀察、驗證,提出猜測:在點D運動的過程中,恒有CD=BE.經(jīng)過與同學們的充分討論,形成了幾種證明的思路:
思路1:要證明CD=BE,只需要連接AE,并證明△ADC≌△AEB;
思路2:要證明CD=BE,只需要過點D作DF∥AB,交AC于F,證明△ADF≌△DEB;
思路3:要證明CD=BE,只需要延長CB至點G,使得BG=CD,證明△ADC≌△DEG;
……
請參考以上思路,幫助小玉證明CD=BE.(只需要用一種方法證明即可)
(3)小玉的發(fā)現(xiàn)啟發(fā)了小明:如圖3,若AB=AC=kBC,AD=kDE,且∠ADE=∠C,此時小明發(fā)現(xiàn)BE,BD,AC三者之間滿足一定的的數(shù)量關(guān)系,這個數(shù)量關(guān)系是______________________.(直接給出結(jié)論無須證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將△ABC繞O點順時針旋轉(zhuǎn)50°得△A1B1C1(A、B分別對應A1、B1),則直線AB與直線A1B1的夾角(銳角)為( )
A.130°
B.50°
C.40°
D.60°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用配方法將二次三項式a2+4a﹣5變形,結(jié)果是( )
A.(a﹣2)2+9B.(a+2)2+9C.(a﹣2)2﹣9D.(a+2)2﹣9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在我市中小學生“我的中國夢”讀書活動中,某校對部分學生做了一次主題為“我最喜愛的圖書”的調(diào)查活動,將圖書分為甲、乙、丙、丁四類,學生可根據(jù)自己的愛好任選其中一類.學校根據(jù)調(diào)查情況進行了統(tǒng)計,并繪制了不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.
請你結(jié)合圖中信息,解答下列問題(其中(1)、(2)直接填答案即可):
(1)本次共調(diào)查了名學生;
(2)被調(diào)查的學生中,最喜愛丁類圖書的學生有人,最喜愛甲類圖書的人數(shù)占本次被調(diào)查人數(shù)的%;
(3)在最喜愛丙類圖書的學生中,女生人數(shù)是男生人數(shù)的1.5倍,若這所學校共有學生2000人,請你估計該校最喜愛丙類圖書的女生和男生分別有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點A、B的坐標分別為(a,0),(0,b),其中a,b滿足 +|2a﹣5b﹣30|=0.將點B向右平移26個單位長度得到點C,如圖①所示.
(1)求點A,B,C的坐標;
(2)點M,N分別為線段BC,OA上的兩個動點,點M從點C向左以1.5個單位長度/秒運動,同時點N從點O向點A以2個單位長度/秒運動,如圖②所示,設(shè)運動時間為t秒(0<t<15).
①當CM<AN時,求t的取值范圍;
②是否存在一段時間,使得S四邊形MNOB>2S四邊形MNAC?若存在,求出t的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果點P(2x+6,x﹣4)在平面直角坐標系的第四象限內(nèi),那么x的取值范圍在數(shù)軸上可表示為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com