【題目】如圖,在矩形中,邊長(zhǎng),,兩動(dòng)點(diǎn)、分別從、同時(shí)出發(fā),點(diǎn)沿勻速運(yùn)動(dòng),每秒,點(diǎn)沿勻速運(yùn)動(dòng),每秒,兩點(diǎn)、中有一點(diǎn)到達(dá)矩形的頂點(diǎn)則運(yùn)動(dòng)停止.設(shè)運(yùn)動(dòng)時(shí)間為秒,的面積為

1)求的函數(shù)關(guān)系式,并寫出的取值范圍;

2)當(dāng)兩點(diǎn)運(yùn)動(dòng)多少秒時(shí),的面積為;

3)當(dāng)取何值時(shí),的面積最大?并求出其最大面積.

【答案】(1) ,;(2)當(dāng)、兩點(diǎn)運(yùn)動(dòng)2秒時(shí),的面積為;(3)當(dāng)時(shí),的面積最大,最大面積為

【解析】

1)根據(jù)題意可知,由矩形面積公式即可求出面積的函數(shù)關(guān)系式,根據(jù)BC的長(zhǎng)求出x的取值;

2)令y=14即可求出x的值,根據(jù)x的取值范圍即可得出答案;

3)根據(jù)二次函數(shù)的圖像與性質(zhì)即可求出最值.

解:(1)在矩形中,

,

,

4÷1=4(秒)

的取值范圍:

2)由(1)知:

,,又

,應(yīng)取.

當(dāng)、兩點(diǎn)運(yùn)動(dòng)2秒時(shí),的面積為

3

,開口向下,對(duì)稱軸

當(dāng)時(shí),的增大而增大.

當(dāng)時(shí),

當(dāng)時(shí),的面積最大,最大面積為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD是△ABC的角平分線,它的垂直平分線分別交AB,BD,BC于點(diǎn)E,F(xiàn),G,連接ED,DG.

(1)請(qǐng)判斷四邊形EBGD的形狀,并說(shuō)明理由;

(2)若∠ABC=30°,∠C=45°,ED=2,點(diǎn)H是BD上的一個(gè)動(dòng)點(diǎn),求HG+HC的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=﹣x2+x1x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,其頂點(diǎn)為D.將拋物線位于直線lyt(t)上方的部分沿直線l向下翻折,拋物線剩余部分與翻折后所得圖形組成一個(gè)“M”形的新圖象.

(1)點(diǎn)AB,D的坐標(biāo)分別為   ,      ;

(2)如圖,拋物線翻折后,點(diǎn)D落在點(diǎn)E處.當(dāng)點(diǎn)E在△ABC內(nèi)(含邊界)時(shí),求t的取值范圍;

(3)如圖,當(dāng)t0時(shí),若Q是“M”形新圖象上一動(dòng)點(diǎn),是否存在以CQ為直徑的圓與x軸相切于點(diǎn)P?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/28/2213337932849152/2214008649842688/STEM/890e59b444e5404588b8511540e03e41.png]

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題提出:

如圖1,在等邊△ABC中,AB9,⊙C半徑為3,P為圓上一動(dòng)點(diǎn),連結(jié)APBP,求AP+BP的最小值

(1)嘗試解決:

為了解決這個(gè)問(wèn)題,下面給出一種解題思路,通過(guò)構(gòu)造一對(duì)相似三角形,將BP轉(zhuǎn)化為某一條線段長(zhǎng),具體方法如下:(請(qǐng)把下面的過(guò)程填寫完整)

如圖2,連結(jié)CP,在CB上取點(diǎn)D,使CD1,則有

又∵∠PCD=∠   

   ∽△   

PDBP

AP+BPAP+PD

∴當(dāng)A,PD三點(diǎn)共線時(shí),AP+PD取到最小值

請(qǐng)你完成余下的思考,并直接寫出答案:AP+BP的最小值為   

(2)自主探索:

如圖3,矩形ABCD中,BC6,AB8P為矩形內(nèi)部一點(diǎn),且PB4,則AP+PC的最小值為   (請(qǐng)?jiān)趫D3中添加相應(yīng)的輔助線)

(3)拓展延伸:

如圖4,在扇形COD中,O為圓心,∠COD120°,OC4OA2,OB3,點(diǎn)P上一點(diǎn),求2PA+PB的最小值,畫出示意圖并寫出求解過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx+ca0)的頂點(diǎn)為M,直線ym與拋物線交于點(diǎn)A,B,若AMB為等腰直角三角形,我們把拋物線上A,B兩點(diǎn)之間的部分與線段AB 圍成的圖形稱為該拋物線對(duì)應(yīng)的準(zhǔn)蝶形,線段AB稱為碟寬,頂點(diǎn)M 稱為碟頂.

1)由定義知,取AB中點(diǎn)N,連結(jié)MN,MNAB的關(guān)系是_____

2)拋物線y對(duì)應(yīng)的準(zhǔn)蝶形必經(jīng)過(guò)Bmm),則m_____,對(duì)應(yīng)的碟寬AB_____

3)拋物線yax24aa0)對(duì)應(yīng)的碟寬在x 軸上,且AB6

①求拋物線的解析式;

②在此拋物線的對(duì)稱軸上是否有這樣的點(diǎn)Pxp,yp),使得∠APB為銳角,若有,請(qǐng)求出yp的取值范圍.若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測(cè)得障礙物邊緣點(diǎn)C的俯角為30°,測(cè)得大樓頂端A的仰角為45°(點(diǎn)B,CE在同一水平直線上),已知AB=80m,DE=10m,求障礙物B,C兩點(diǎn)間的距離(結(jié)果精確到0.1m)(參考數(shù)據(jù):≈1.414≈1.732

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD和過(guò)C點(diǎn)的直線互相垂直,垂足為D,且AC平分∠DAB

1)求證:DC為⊙O的切線;

2)若⊙O的半徑為3,AD=4,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】撫順某中學(xué)為了解八年級(jí)學(xué)生的體能狀況,從八年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測(cè)試,測(cè)試結(jié)果分為AB,CD四個(gè)等級(jí).請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問(wèn)題:

1)本次抽樣調(diào)查共抽取了多少名學(xué)生?

2)求測(cè)試結(jié)果為C等級(jí)的學(xué)生數(shù),并補(bǔ)全條形圖;

3)若該中學(xué)八年級(jí)共有700名學(xué)生,請(qǐng)你估計(jì)該中學(xué)八年級(jí)學(xué)生中體能測(cè)試結(jié)果為D等級(jí)的學(xué)生有多少名?

4)若從體能為A等級(jí)的2名男生2名女生中隨機(jī)的抽取2名學(xué)生,做為該校培養(yǎng)運(yùn)動(dòng)員的重點(diǎn)對(duì)象,請(qǐng)用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,點(diǎn)的中點(diǎn),點(diǎn)是邊上一點(diǎn),,交的延長(zhǎng)線于點(diǎn),,交邊于點(diǎn),過(guò)點(diǎn),垂足為點(diǎn),分別交于點(diǎn)

1)求證:

2)設(shè),求關(guān)于的函數(shù)關(guān)系式及其定義域;

3)當(dāng)是以為腰的等腰三角形時(shí),求線段的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案