【題目】如圖,直線 AB與坐標軸交與點, 動點P沿路線運動.
(1)求直線AB的表達式;
(2)當點P在OB上,使得AP平分時,求此時點P的坐標;
【答案】(1)y=x+6;(2)P(3,0).
【解析】
1)直接利用待定系數(shù)法即可得出結論;
(2)方法1、利用角平分線判斷出BC=AB=10,進而判斷出△AOP∽△CBP,求出OP,即可得出結論;
方法2、先判斷出OP=PM,設OP=m,得出PM=m,BP=8-m,再求出AM=OA=6,進而得出BM=AB-AM=4,最后用勾股定理建立方程求解即可得出結論.
解:(1)設直線AB的解析式為y=kx+b,
∵A(0,6),B(8,0),
∴ ,
∴ ,
∴直線AB的解析式為y=x+6;
(2)方法1、如圖1,
∵A(0,6),B(8,0),
∴OA=6,OB=8,AB=10,
過點B作BC∥OA交AP的延長線于C,
∴∠C=∠OAP,
∵AP平分∠OAB,
∴∠OAP=∠BAP,
∴∠C=∠BAP,
∴BC=AB=10,
∵BC∥OA,
∴△AOP∽△CBP,
∴ = ,
∴ ,
∴OP=3,
∴P(3,0);
方法2、如圖3,過點P作PM⊥AB于M,
∵AP是∠OAB的角平分線,
∴OP=PM,
設OP=m,
∴PM=m,
∴BP=OB-OP=8-m
易知,△AOP≌△AMP,
∴AM=OA=6,
∴BM=AB-AM=4,
在Rt△BMP中,根據(jù)勾股定理得,m2+16=(8-m)2,
∴m=3,
∴P(3,0).
故答案為:(1)y=x+6;(2)P(3,0).
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AD = 2AB = 4,E為AD的中點,一塊足夠大的三角板的直角頂點與E重合,將三角板繞點E旋轉,三角板的兩直角邊分別交AB、BC(或它們的延長線)于點M、N,設∠AEM = α(0°<α < 90°),給出四個結論:
①AM =CN ②∠AME =∠BNE ③BN-AM =2 ④ .
上述結論中正確的個數(shù)是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角坐標系中,一次函數(shù)的圖象分別與,軸交于,兩點,正比例函數(shù)的圖象與交于點.
(1)求的值及的解析式;
(2)求的值;
(3)一次函數(shù)的圖象為,且,,不能圍成三角形,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖點A(1,1),B(2,﹣3),點P為x軸上一點,當|PA﹣PB|最大時,點P的坐標為( 。
A. (﹣1,0) B. (,0) C. (,0) D. (1,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】目前使用節(jié)能燈照明已經(jīng)基本普及,某商場計劃購進甲,乙兩種節(jié)能燈共1200只,這兩種節(jié)能燈的進價、售價如表:
進價(元/只) | 售價(元/只) | |
甲型 | 25 | 30 |
乙型 | 45 | 60 |
(1)若商場某一天銷售節(jié)能燈中,銷售甲型的只數(shù)是乙型的只數(shù)的3倍,銷售所收的款是9000元,問這天銷售節(jié)能燈為多少只?
(2)若商場購進節(jié)能燈的貨款為38000元時,商場銷售完節(jié)能燈所得利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究與發(fā)現(xiàn):如圖1所示的圖形,像我們常見的學習用品——圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,那么在這一個簡單的圖形中,到底隱藏了哪些數(shù)學知識呢?下面就請你發(fā)揮你的聰明才智,解決以下問題:
(1)觀察“規(guī)形圖”,試探究與之間的關系,并說明理由;
(2)請你直接利用以上結論,解決以下三個問題:
①如圖2,把一塊三角尺XYZ放置在上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點B、C,若,則________;
②如圖3,DC平分,EC平分,若,求的度數(shù);
③如圖4,的10 等分線相交于點,若,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】春節(jié)期間,小明一家乘坐飛機前往某市旅游,計劃第二天租出租車自駕游.
公司 | 租車收費方式 |
甲 | 每日固定租金80元,另外每小時收費15 元. |
乙 | 無固定租金,直接以租車時間計費,每小時租費30元 |
(1)設租車時間為x小時, 租用甲公司的車所需費用為元,租用乙公司的車所需費用為元,分別求出與x之間的關系式:
(2)請你幫助小明計算并選擇哪個公司租車合算.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】電視節(jié)目“奔跑吧兄弟”播出后深受中小學生的喜愛,小剛想知道大家最喜歡哪位“兄弟”,于是在本校隨機抽取了一部分學生進行抽查(每人只能選一個自己最喜歡的“兄弟”),將調(diào)查結果進行了整理后繪制成如圖兩幅不完整的統(tǒng)計圖,請結合圖中提供的信息解答下列問題:
(1)本次被調(diào)查的學生有多少人.
(2)將兩幅統(tǒng)計圖補充完整.
(3)若小剛所在學校有2000名學生,請根據(jù)圖中信息,估計全校喜歡“Angelababy”的人數(shù).
(4)若從3名喜歡“李晨”的學生和2名喜歡“Angelababy”的學生中隨機抽取兩人參加文體活動,則兩人都是喜歡“李晨”的學生的概率是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點是定長線段上一點,、兩點分別從點、出發(fā)以1厘米/秒,2厘米/秒的速度沿直線向左運動(點在線段上,點在線段上).
(1)若點、運動到任一時刻時,總有,請說明點在線段上的位置;
(2)在(1)的條件下,點是直線上一點,且,求的值;
(3)在(1)的條件下,若點、運動5秒后,恰好有,此時點停止運動,點繼續(xù)運動(點在線段上),點、分別是、的中點,下列結論:①的值不變;②的值不變.可以說明,只有一個結論是正確的,請你找出正確的結論并求值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com