【題目】如圖,已知一次函數(shù)y= x+b的圖象與反比例函數(shù)y= (x<0)的圖象交于點A(﹣1,2)和點B,點C在y軸上.

(1)當(dāng)△ABC的周長最小時,求點C的坐標(biāo);
(2)當(dāng) x+b< 時,請直接寫出x的取值范圍.

【答案】
(1)解:作點A關(guān)于y軸的對稱點A′,連接A′B交y軸于點C,此時點C即是所求,如圖所示.

∵反比例函數(shù)y= (x<0)的圖象過點A(﹣1,2),

∴k=﹣1×2=﹣2,

∴反比例函數(shù)解析式為y=﹣ (x<0);

∵一次函數(shù)y= x+b的圖象過點A(﹣1,2),

∴2=﹣ +b,解得:b= ,

∴一次函數(shù)解析式為y= x+

聯(lián)立一次函數(shù)解析式與反比例函數(shù)解析式成方程組:

解得: ,或

∴點A的坐標(biāo)為(﹣1,2)、點B的坐標(biāo)為(﹣4, ).

∵點A′與點A關(guān)于y軸對稱,

∴點A′的坐標(biāo)為(1,2),

設(shè)直線A′B的解析式為y=mx+n,

則有 ,解得:

∴直線A′B的解析式為y= x+

令y= x+ 中x=0,則y= ,

∴點C的坐標(biāo)為(0, ).


(2)解:觀察函數(shù)圖象,發(fā)現(xiàn):

當(dāng)x<﹣4或﹣1<x<0時,一次函數(shù)圖象在反比例函數(shù)圖象下方,

∴當(dāng) x+ <﹣ 時,x的取值范圍為x<﹣4或﹣1<x<0.


【解析】本題考查了反比例函數(shù)與一次函數(shù)的交點問題、軸對稱中的最短線路問題、利用待定系數(shù)法求函數(shù)解析式以及反比例函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是:(1)求出直線A′B的解析式;(2)找出交點坐標(biāo).本題屬于中檔題,難度不大,但解題過程稍顯繁瑣,解決該題型題目時,找出點的坐標(biāo),利用待定系數(shù)法求出函數(shù)解析式是關(guān)鍵.(1)作點A關(guān)于y軸的對稱點A′,連接A′B交y軸于點C,此時點C即是所求.由點A為一次函數(shù)與反比例函數(shù)的交點,利用待定系數(shù)法和反比例函數(shù)圖象點的坐標(biāo)特征即可求出一次函數(shù)與反比例函數(shù)解析式,聯(lián)立兩函數(shù)解析式成方程組,解方程組即可求出點A、B的坐標(biāo),再根據(jù)點A′與點A關(guān)于y軸對稱,求出點A′的坐標(biāo),設(shè)出直線A′B的解析式為y=mx+n,結(jié)合點的坐標(biāo)利用待定系數(shù)法即可求出直線A′B的解析式,令直線A′B解析式中x為0,求出y的值,即可得出結(jié)論;(2)根據(jù)兩函數(shù)圖象的上下關(guān)系結(jié)合點A、B的坐標(biāo),即可得出不等式的解集.
【考點精析】解答此題的關(guān)鍵在于理解確定一次函數(shù)的表達(dá)式的相關(guān)知識,掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法,以及對軸對稱-最短路線問題的理解,了解已知起點結(jié)點,求最短路徑;與確定起點相反,已知終點結(jié)點,求最短路徑;已知起點和終點,求兩結(jié)點之間的最短路徑;求圖中所有最短路徑.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,A,E為格點,B,F(xiàn)為小正方形邊的中點,C為AE,BF的延長線的交點.

(1)AE的長等于;
(2)若點P在線段AC上,點Q在線段BC上,且滿足AP=PQ=QB,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段PQ,并簡要說明點P,Q的位置是如何找到的(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:

(1)試驗觀察:

如果經(jīng)過兩點畫直線,那么:

組最多可以畫____條直線;

組最多可以畫____條直線;

組最多可以畫____條直線.

(2)探索歸納:

如果平面上有n(n≥3)個點,且任意3個點均不在1條直線上,那么經(jīng)過兩點最多可以畫____條直線.(用含n的式子表示)

(3)解決問題:

某班45名同學(xué)在畢業(yè)后的一次聚會中,若每兩人握1次手問好,那么共握____次手.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+3與x軸、y軸分別相交于點B、C,經(jīng)過B、C兩點的拋物線y=ax2+bx+c與x軸的另一個交點為A,頂點為P,且對稱軸為直線x=2.

(1)求該拋物線的解析式;
(2)連接PB、PC,求△PBC的面積;
(3)連接AC,在x軸上是否存在一點Q,使得以點P,B,Q為頂點的三角形與△ABC相似?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C是半圓O上一點,弦AD平分∠BAC,交BC于點E,若AB=6,AD=5,則DE的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD內(nèi)作∠EAF=45°,AE交BC于點E,AF交CD于點F,連接EF,過點A作AH⊥EF,垂足為H.

(1)如圖2,將△ADF繞點A順時針旋轉(zhuǎn)90°得到△ABG.
①求證:△AGE≌△AFE;
②若BE=2,DF=3,求AH的長.
(2)如圖3,連接BD交AE于點M,交AF于點N.請?zhí)骄坎⒉孪耄壕段BM,MN,ND之間有什么數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為4的正方形ABCD內(nèi)接于點O,點E是 上的一動點(不與A、B重合),點F是 上的一點,連接OE、OF,分別與AB、BC交于點G,H,且∠EOF=90°,有以下結(jié)論: ① = ;
②△OGH是等腰三角形;
③四邊形OGBH的面積隨著點E位置的變化而變化;
④△GBH周長的最小值為4+
其中正確的是(把你認(rèn)為正確結(jié)論的序號都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程
(1)x2+x﹣1=0
(2)x(x﹣2)+x﹣2=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在x軸的上方,直角∠BOA繞原點O順時針方向旋轉(zhuǎn),若∠BOA的兩邊分別與函數(shù)y=﹣ 、y= 的圖像交于B、A兩點,則tanA=

查看答案和解析>>

同步練習(xí)冊答案