(2013•煙臺(tái))如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對(duì)稱(chēng)軸為x=-1,且過(guò)點(diǎn)(-3,0).下列說(shuō)法:①abc<0;②2a-b=0;③4a+2b+c<0;④若(-5,y1),(
5
2
,y2)是拋物線(xiàn)上兩點(diǎn),則
y1>y2.其中說(shuō)法正確的是(  )
分析:根據(jù)圖象得出a>0,b=2a>0,c<0,即可判斷①②;把x=2代入拋物線(xiàn)的解析式即可判斷③,求出點(diǎn)(-5,y1)關(guān)于對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)的坐標(biāo)是(3,y1),根據(jù)當(dāng)x>-1時(shí),y隨x的增大而增大即可判斷④.
解答:解:∵二次函數(shù)的圖象的開(kāi)口向上,
∴a>0,
∵二次函數(shù)的圖象y軸的交點(diǎn)在y軸的負(fù)半軸上,
∴c<0,
∵二次函數(shù)圖象的對(duì)稱(chēng)軸是直線(xiàn)x=-1,
∴-
b
2a
=-1,
∴b=2a>0,
∴abc<0,∴①正確;
2a-b=2a-2a=0,∴②正確;
∵二次函數(shù)y=ax2+bx+c圖象的一部分,其對(duì)稱(chēng)軸為x=-1,且過(guò)點(diǎn)(-3,0).
∴與x軸的另一個(gè)交點(diǎn)的坐標(biāo)是(1,0),
∴把x=2代入y=ax2+bx+c得:y=4a+2b+c>0,∴③錯(cuò)誤;
∵二次函數(shù)y=ax2+bx+c圖象的對(duì)稱(chēng)軸為x=-1,
∴點(diǎn)(-5,y1)關(guān)于對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)的坐標(biāo)是(3,y1),
根據(jù)當(dāng)x>-1時(shí),y隨x的增大而增大,
5
2
<3,
∴y2<y1,∴④正確;
故選C.
點(diǎn)評(píng):本題考查了二次函數(shù)的圖象與系數(shù)的關(guān)系的應(yīng)用,題目比較典型,主要考查學(xué)生的理解能力和辨析能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•煙臺(tái))如圖,已知⊙O1的半徑為1cm,⊙O2的半徑為2cm,將⊙O1,⊙O2放置在直線(xiàn)l上,如果⊙O1在直線(xiàn)l上任意滾動(dòng),那么圓心距O1O2的長(zhǎng)不可能是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•煙臺(tái))如圖,將四邊形ABCD先向左平移3個(gè)單位,再向上平移2個(gè)單位,那么點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•煙臺(tái))如圖,一艘海上巡邏船在A地巡航,這時(shí)接到B地海上指揮中心緊急通知:在指揮中心北偏西60°方向的C地,有一艘漁船遇險(xiǎn),要求馬上前去救援.此時(shí)C地位于A北偏西30°方向上,A地位于B地北偏西75°方向上,A、B兩地之間的距離為12海里.求A、C兩地之間的距離(參考數(shù)據(jù):
2
≈1.41,
3
≈1.73,
6
≈2.45,結(jié)果精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•煙臺(tái))如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A、C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線(xiàn)y=-
1
2
x+3交AB,BC分別于點(diǎn)M,N,反比例函數(shù)y=
k
x
的圖象經(jīng)過(guò)點(diǎn)M,N.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•煙臺(tái))如圖,AB是⊙O的直徑,BC是⊙O的切線(xiàn),連接AC交⊙O于點(diǎn)D,E為
AD
上一點(diǎn),連結(jié)AE,BE,BE交AC于點(diǎn)F,且AE2=EF•EB.
(1)求證:CB=CF;
(2)若點(diǎn)E到弦AD的距離為1,cos∠C=
3
5
,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案