(2013•煙臺)如圖,一艘海上巡邏船在A地巡航,這時接到B地海上指揮中心緊急通知:在指揮中心北偏西60°方向的C地,有一艘漁船遇險,要求馬上前去救援.此時C地位于A北偏西30°方向上,A地位于B地北偏西75°方向上,A、B兩地之間的距離為12海里.求A、C兩地之間的距離(參考數(shù)據(jù):
2
≈1.41,
3
≈1.73,
6
≈2.45,結(jié)果精確到0.1)
分析:過點B作BD⊥CA交CA延長線于點D,根據(jù)題意可得∠ACB和∠ABC的度數(shù),然后根據(jù)三角形外角定理求出∠DAB的度數(shù),已知AB=12海里,可求出BD、AD的長度,在Rt△CBD中,解直角三角形求出CD的長度,繼而可求出A、C之間的距離.
解答:解:過點B作BD⊥CA交CA延長線于點D,
由題意得,∠ACB=60°-30°=30°,
∠ABC=75°-60°=15°,
∴∠DAB=∠DBA=45°,
在Rt△ABD中,AB=12,∠DAB=45°,
∴BD=AD=ABcos45°=6
2
,
在Rt△CBD中,CD=
BD
tan30°
=6
6
,
∴AC=6
6
-6
2
≈6.2(海里).
答:A、C兩地之間的距離約為6.2海里.
點評:本題考查了解直角三角形的知識,解答本題的關(guān)鍵是構(gòu)造直角三角形,利用三角函數(shù)的知識求解相關(guān)線段的長度,難度一般.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•煙臺)如圖,已知⊙O1的半徑為1cm,⊙O2的半徑為2cm,將⊙O1,⊙O2放置在直線l上,如果⊙O1在直線l上任意滾動,那么圓心距O1O2的長不可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•煙臺)如圖,將四邊形ABCD先向左平移3個單位,再向上平移2個單位,那么點A的對應(yīng)點A′的坐標是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•煙臺)如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,A、C分別在坐標軸上,點B的坐標為(4,2),直線y=-
1
2
x+3交AB,BC分別于點M,N,反比例函數(shù)y=
k
x
的圖象經(jīng)過點M,N.
(1)求反比例函數(shù)的解析式;
(2)若點P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•煙臺)如圖,AB是⊙O的直徑,BC是⊙O的切線,連接AC交⊙O于點D,E為
AD
上一點,連結(jié)AE,BE,BE交AC于點F,且AE2=EF•EB.
(1)求證:CB=CF;
(2)若點E到弦AD的距離為1,cos∠C=
3
5
,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案