作業(yè)寶如圖,直線y=2x+2與y軸交于A點(diǎn),與反比例函數(shù)數(shù)學(xué)公式(x>0)的圖象交于點(diǎn)M,過M作MH⊥x軸于點(diǎn)H,連接AH,tan∠AHO=2.
(1)求反比例函數(shù)解析式;
(2)在y軸上是否存在點(diǎn)P,使以點(diǎn)P、A、H、M為頂點(diǎn)的四邊形是平行四邊形?如果存在,直接寫出P點(diǎn)坐標(biāo);如果不存在,請說明理由.

解:(1)由y=2x+2可知A(0,2),即OA=2.
∵tan∠AHO=2,
∴OH=1,
∵M(jìn)H⊥x軸,
∴點(diǎn)M的橫坐標(biāo)為1.
∵點(diǎn)M在直線y=2x+2上,
∴點(diǎn)M的縱坐標(biāo)為4.即M(1,4).
∵點(diǎn)M在y=(x>0)上,
∴k=1×4=4;

(2)設(shè)P(0,y),
∵A(0,2),H(1,0),M(1,4),
∴當(dāng)AM為平行四邊形的對角線時(shí),=,解得y=6,
∴P(0,6);
當(dāng)AH為平行四邊形的對角線時(shí),=,解得y=-2,
∴P(0,-2).
綜上所述,P點(diǎn)坐標(biāo)為(0,6)或(0,-2).
分析:(1)根據(jù)直線解析式求A點(diǎn)坐標(biāo),得OA的長度;根據(jù)三角函數(shù)定義可求OH的長度,得點(diǎn)M的橫坐標(biāo);根據(jù)點(diǎn)M在直線上可求點(diǎn)M的坐標(biāo).從而可求k的值;
(2)設(shè)P(0,y),分AM為平行四邊形的對角線或AH為平行四邊形的對角線兩種情況進(jìn)行分類討論.
點(diǎn)評:本題考查的是反比例函數(shù)綜合題,涉及到反比例函數(shù)與一次函數(shù)的交點(diǎn)問題、平行四邊形的性質(zhì)等知識(shí),難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線y=-2x+b與y軸交于點(diǎn)A,與x軸交于點(diǎn)D,與雙曲線y=
kx
在第一象限交于B、C兩點(diǎn),且AB•BD=2,則k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線y=-2x+6與x軸、y軸分別交于P、Q兩點(diǎn),把△POQ沿PQ翻折,點(diǎn)O落在R處,則點(diǎn)R的坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,直線y=-2x+2與x軸、y軸分別交于點(diǎn)A、B,以線段AB為直角邊在第一象限內(nèi)作等精英家教網(wǎng)腰直角△ABC,∠BAC=90°,過C作CD⊥x軸,垂足為D.
(1)求點(diǎn)A、B的坐標(biāo)和AD的長;
(2)求過B、A、D三點(diǎn)的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線y1=2x與雙曲線y2=
8x
相交于點(diǎn)A、E.另一直線y3=x+b與雙曲線交于點(diǎn)A、B,與x、y精英家教網(wǎng)軸分別交于點(diǎn)C、D.直線EB交x軸于點(diǎn)F.
(1)求A、B兩點(diǎn)的坐標(biāo),并比較線段OA、OB的長短;
(2)由函數(shù)圖象直接寫出函數(shù)y2>y3>y1的自變量x的取值范圍;
(3)求證:△COD∽△CBF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線y=-2x+8與兩坐標(biāo)軸分別交于P,Q兩點(diǎn),在線段PQ上有一點(diǎn)A,過點(diǎn)A分別作兩坐標(biāo)軸的垂線,垂足分別為B、C.
(1)若四邊形ABOC的面積為6,求點(diǎn)A的坐標(biāo).
(2)有人說,當(dāng)四邊形ABOC為正方形時(shí),其面積最大,你認(rèn)為正確嗎?若正確,請給予證明;若錯(cuò)誤,請舉反例說明.

查看答案和解析>>

同步練習(xí)冊答案