【題目】如圖,在邊長為4的正方形ABCD中,P是BC邊上一動(dòng)點(diǎn)(不含B、C兩點(diǎn)),將 ABP沿直線AP翻折,點(diǎn)B落在點(diǎn)E處;在CD上有一點(diǎn)M,使得將 CMP沿直線MP翻折后,點(diǎn)C落在直線PE上的點(diǎn)F處,直線PE交CD于點(diǎn)N,連接MA,NA.則以下結(jié)論中正確的個(gè)數(shù)有( ).
① CMP∽ BPA;
②四邊形AMCB的面積最大值為10;
③當(dāng)P為BC中點(diǎn)時(shí),AE為線段NP的中垂線;
④線段AM的最小值為2 ;
⑤當(dāng) ABP≌ AND時(shí),BP=4 -4.
A.①②③
B.②③⑤
C.①④⑤
D.①②⑤
【答案】D
【解析】解:∵∠APB=∠APE,∠MPC=∠MPN,
∵∠CPN+∠NPB=180°,
∴2∠NPM+2∠APE=180°,
∴∠MPN+∠APE=90°,
∴∠APM=90°,
∵∠CPM+∠APB=90°,∠APB+∠PAB=90°,
∴∠CPM=∠PAB,
∵四邊形ABCD是正方形,
∴AB=CB=DC=AD=4,∠C=∠B=90°,
∴△CMP∽△BPA.故①正確,
設(shè)PB=x,則CP=4-x,
∵△CMP∽△BPA,
∴= ,
∴CM=x(4-x),
∴S四邊形AMCB=[4+x(4-x)]×4=-x2+2x+8=-(x-2)2+10,
∴x=2時(shí),四邊形AMCB面積最大值為10,故②正確,
易證得△ADN≌△AEN,當(dāng)PB=PC=PE=2時(shí),設(shè)ND=NE=y,
在RT△PCN中,(y+2)2=(4-y)2+22解得y= ,
∴NE≠EP,故③錯(cuò)誤,
作MG⊥AB于G,
∵AM== ,
∴AG最小時(shí)AM最小,
∵AG=AB-BG=AB-CM=4-x(4-x)=(x-2)2+3,
∴x=2時(shí),AG最小值=3,
∴AM的最小值==5,故④錯(cuò)誤.
∵△ABP≌△ADN時(shí),
∴∠PAB=∠DAN=22.5°,在AB上取一點(diǎn)K使得AK=PK,設(shè)PB=z,
∴∠KPA=∠KAP=22.5°
∵∠PKB=∠KPA+∠KAP=45°,
∴∠BPK=∠BKP=45°,
∴PB=BK=z,AK=PK=z,
∴z+z=4,
∴z=4-4,
∴PB=4-4,故⑤正確.
故正確的為①②⑤.
故選D.
【考點(diǎn)精析】關(guān)于本題考查的相似三角形的判定與性質(zhì),需要了解相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察圖中給出的四個(gè)點(diǎn)陣,s表示每個(gè)點(diǎn)陣中的點(diǎn)的個(gè)數(shù),按照?qǐng)D形中的點(diǎn)的個(gè)數(shù)變化規(guī)律,猜想第10個(gè)點(diǎn)陣中的點(diǎn)的個(gè)數(shù)s為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半圓O的直徑AB=10,有一條定長為6的動(dòng)弦CD在弧AB上滑動(dòng)(點(diǎn)C、點(diǎn)D分別不與點(diǎn)A、點(diǎn)B重合),點(diǎn)E、F在AB上,EC⊥CD,F(xiàn)D⊥CD.
(1)求證:EO=OF;
(2)聯(lián)結(jié)OC,如果△ECO中有一個(gè)內(nèi)角等于45°,求線段EF的長;
(3)當(dāng)動(dòng)弦CD在弧AB上滑動(dòng)時(shí),設(shè)變量CE=x,四邊形CDFE面積為S,周長為l,問:S與l是否分別隨著x的變化而變化?試用所學(xué)的函數(shù)知識(shí)直接寫出它們的函數(shù)解析式及函數(shù)定義域,以說明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我省某工藝廠為全運(yùn)會(huì)設(shè)計(jì)了一款成本為每件20元的工藝品,投放市場(chǎng)試銷后發(fā)現(xiàn)每天的銷售量y(件)是售價(jià)x(元/件)的一次函數(shù)。當(dāng)售價(jià)為22元/件時(shí),每天銷售量為780件;當(dāng)售價(jià)為25元/件時(shí),每天銷售量為750件。
(1)求y與x的函數(shù)關(guān)系式;
(2)如果該工藝品售價(jià)最高不超過每件30元,那么售價(jià)定為每件多少元時(shí),工藝廠銷售該工藝品每天獲得的利潤最大?最大利潤是多少元?(利潤=售價(jià)-成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列一段文字,再回答后面的問題.
已知在平面內(nèi)兩點(diǎn)P1(x1,y1),P2(x2,y2),這兩點(diǎn)間的距離P1P2=,同時(shí),當(dāng)兩點(diǎn)所在的直線在坐標(biāo)軸或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時(shí),兩點(diǎn)間距離公式可簡(jiǎn)化為|x2﹣x1|或|y2﹣y1|.
(1)已知A(3,3),B(﹣2,﹣1),試求A,B兩點(diǎn)間的距離;
(2)已知A,B在平行于y軸的直線上,點(diǎn)A的縱坐標(biāo)為7,點(diǎn)B的縱坐標(biāo)為﹣2,試求A,B兩點(diǎn)間的距離;
(3)已知一個(gè)三角形各頂點(diǎn)坐標(biāo)為A(0,5),B(﹣3,2),C(3,2),你能判斷此三角形的形狀嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,隨機(jī)地閉合開關(guān)S1 , S2 , S3 , S4 , S5中的三個(gè),能夠使燈泡L1 , L2同時(shí)發(fā)光的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P1、P2是反比例函數(shù)y= (k>0)在第一象限圖象上的兩點(diǎn),點(diǎn)A1的坐標(biāo)為(4,0).若△P1OA1與△P2A1A2均為等腰直角三角形,其中點(diǎn)P1、P2為直角頂點(diǎn).
(1)求反比例函數(shù)的解析式.
(2)①求P2的坐標(biāo). ②根據(jù)圖象直接寫出在第一象限內(nèi)當(dāng)x滿足什么條件時(shí),經(jīng)過點(diǎn)P1、P2的一次函數(shù)的函數(shù)值大于反比例函數(shù)y= 的函數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)在直角坐標(biāo)系中,先描出點(diǎn)A(1,3),點(diǎn)B(4,1).并直接寫出點(diǎn)A關(guān)于x軸的對(duì)稱的A1的坐標(biāo)A1 ( , ).
(2)在x軸上找一點(diǎn)C,使AC+BC的值最小; (保留作圖痕跡).
(3)用尺規(guī)在x軸上找一點(diǎn)P,使PA=PB(保留作圖痕跡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品每件成本10元,試銷階段每件產(chǎn)品的銷售單價(jià)x(元/件)與日銷售量y(件)之間的關(guān)系如下表.
x(元∕件) | 15 | 18 | 20 | 22 | … |
y(件) | 250 | 220 | 200 | 180 | … |
按照這樣的規(guī)律可得,日銷售利潤w(元)與銷售單價(jià)x(元/件)之間的函數(shù)關(guān)系式是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com