【題目】如圖,二次函數(shù) y=﹣x2+bx+c 的圖象經(jīng)過 A(1,0),B(0,﹣3)兩點.
(1)求這個拋物線的解析式及頂點坐標;
(2)設(shè)該二次函數(shù)的對稱軸與 x 軸交于點 C,連接 BA、BC,求△ABC 的面積.
(3)在拋物線的對稱軸上是否存在一點 P,使得 O、B、C、P 四點為頂點的四邊形是平行四邊形?若存在,請直接寫出 P 點坐標;若不存在,請說明理由.
【答案】(1)y=﹣x2+4x﹣3, 即 y=﹣(x﹣2)2+1,(2,1);(2);(3)(2,3)或(2,-3).
【解析】
(1)根據(jù)二次函數(shù) 的圖象經(jīng)過 A(1,0),B(0,﹣3)兩點,即可得到拋物線的解析式為 即,進而得出拋物線的頂點坐標;
(2)由(1)可得,C(2,0),根據(jù) A(1,0),B(0,﹣3),可得 OC=2,OA=1, OB=3,AC=1,即可得到△ABC的面積;
(3)分兩種情況討論:當四邊形 OBCP1 是平行四邊形時,CP1=OB=3;當四邊形 OBP2C 是平行四邊形時,CP2=OB=3,即可得到 P 點坐標.
解:(1)∵二次函數(shù) 的圖象經(jīng)過 A(1,0),B(0,﹣3)兩點,
∴拋物線的解析式為 即
∴拋物線的頂點坐標為(2,1);
(2)由(1)可得,C(2,0),又∵A(1,0),B(0,﹣3),
∴OC=2,OA =1,OB=3,
∴AC=1,
∴△ABC 的面積
(3)存在,P 點有2個,坐標為 P1(2,3),P2(2,﹣3).
如圖,當四邊形 OBCP1 是平行四邊形時,CP1=OB=3,而 OC=2, 故 P1(2,3);
當四邊形 OBP2C 是平行四邊形時,CP2=OB=3,而 OC=2, 故 P2(2,﹣3).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點 E 是△ABC 的內(nèi)心,AE 的延長線和△ABC 的外接圓相交于點 D,連 接 BE
(1) 若∠CBD=35°,求∠BAC 及∠BEC 的度數(shù)
(2) 求證:DE=DB
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是圓O的直徑,弦CD⊥AB,垂足H在半徑OB上,AH=5,CD=,點E在弧AD上,射線AE與CD的延長線交于點F.
(1)求圓O的半徑;
(2)如果AE=6,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小穎同學學完統(tǒng)計知識后,隨機調(diào)查了她所在轄區(qū)若干名居民的年齡,將調(diào)查數(shù)據(jù)繪制成如下扇形和條形統(tǒng)計圖:
請根據(jù)以上不完整的統(tǒng)計圖提供的信息,解答下列問題:
(1)小穎同學共調(diào)查了多少名居民的年齡,扇形統(tǒng)計圖中a,b各等于多少?
(2)補全條形統(tǒng)計圖;
(3)若該轄區(qū)年齡在0~14歲的居民約有1500人,請估計年齡在15~59歲的居民的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一座人行天橋的示意圖,天橋的高度是10米,CB⊥DB,坡面AC的傾斜角為45°.為了方便行人推車過天橋,市政部門決定降低坡度,使新坡面DC的坡度為i=:3.若新坡角下需留3米寬的人行道,問離原坡角(A點處)10米的建筑物是否需要拆除?(參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC與△ADE中,∠C=∠AED=90°,點E在AB上,那么添加下列一個條件后,仍無法判定△ABC∽△DAE的是( )
A. B. ∠B =∠D C. AD∥BC D. ∠BAC=∠D
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】家用電滅蚊器的發(fā)熱部分使用了PTC發(fā)熱材料,它的電阻R(kΩ)隨溫度t(℃)(在一定范圍內(nèi))變化的大致圖象如圖所示.通電后,發(fā)熱材料的溫度在由室溫10℃上升到30℃的過程中,電阻與溫度成反比例關(guān)系,且在溫度達到30℃時,電阻下降到最小值;隨后電阻隨溫度升高而增加,溫度每上升1℃,電阻增加kΩ.
(1)求當10≤t≤30時,R和t之間的關(guān)系式;
(2)求溫度在30℃時電阻R的值;并求出t≥30時,R和t之間的關(guān)系式;
(3)家用電滅蚊器在使用過程中,溫度在什么范圍內(nèi)時,發(fā)熱材料的電阻不超過6 kΩ?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)如圖,△ABC內(nèi)接于⊙O,AB=AC,BD為⊙O的弦,且AB∥CD,過點A作⊙O的切線AE與DC的延長線交于點E,AD與BC交于點F.
(1)求證:四邊形ABCE是平行四邊形;
(2)若AE=6,CD=5,求OF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點A、C,與AB交于點D.
(1)求拋物線的函數(shù)解析式;
(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達式;
②當S最大時,在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點F,使△DFQ為直角三角形,請直接寫出所有符合條件的點F的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com