【題目】如圖,D,E是△ABC中AB,BC邊上的點,且DE∥AC,∠ACB角平分線和它的外角的平分線分別交DE于點G和H.則下列結(jié)論錯誤的是( )
A. 若BG∥CH,則四邊形BHCG為矩形
B. 若BE=CE時,四邊形BHCG為矩形
C. 若HE=CE,則四邊形BHCG為平行四邊形
D. 若CH=3,CG=4,則CE=2.5
【答案】C
【解析】
由∠ACB角平分線和它的外角的平分線分別交DE于點G和H可得∠HCG=90°,∠ECG=∠ACG即可得HE=EC=EG,再根據(jù)A,B,C,D的條件,進行判斷.
解:∵∠ACB角平分線和它的外角的平分線分別交DE于點G和H,
∴∠HCG=90°,∠ECG=∠ACG;
∵DE∥AC.
∴∠ACG=∠HGC=∠ECG.
∴EC=EG;
同理:HE=EC,
∴HE=EC=EG=HG;
若CH∥BG,
∴∠HCG=∠BGC=90°,
∴∠EGB=∠EBG,
∴BE=EG,
∴BE=EG=HE=EC,
∴CHBG是平行四邊形,且∠HCG=90°,
∴CHBG是矩形;
故A正確;
若BE=CE,
∴BE=CE=HE=EG,
∴CHBG是平行四邊形,且∠HCG=90°,
∴CHBG是矩形,
故B正確;
若HE=EC,則不可以證明則四邊形BHCG為平行四邊形,
故C錯誤;
若CH=3,CG=4,根據(jù)勾股定理可得HG=5,
∴CE=2.5,
故D正確.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】我們用[a]表示不大于a的最大整數(shù),例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a>表示大于a的最小整數(shù),例如:<2.5>=3,<4.5>=5,<-1.5>=-1.解決下列問題.
(1)[-4.5]=_____;<3.5>=________;
(2)若[x]=2,則x的取值范圍是________;若<y>=-1,則y的取值范圍是_______.
(3)若,則x為_________.
(4)已知x、y滿足方程組,求x、y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了某校七年級學生對《最強大腦》、《朗讀者》、《中國詩詞大會》、《極限挑戰(zhàn)》四個電視節(jié)目的喜愛情況,隨機抽取了位學生進行調(diào)查統(tǒng)計(要求每位學生選出并且只能選一個自己最喜愛的節(jié)目),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖(圖1,圖2)
根據(jù)統(tǒng)計圖提供的信息,回答下列問題:
(1)______,______.
(2)在圖1中,喜愛《朗讀者》節(jié)目所對應的扇形的圓心角度數(shù)是______度;
(3)請根據(jù)以上信息直接在答題卡中補全圖2的條形統(tǒng)計圖;
(4)已知該校七年級共有420位學生,那么他們最喜歡《中國詩詞大會》這個節(jié)目的學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】七年級派出12名同學參加數(shù)學競賽,老師以75分為基準,把分數(shù)超過75分的部分記為正數(shù),不足部分記為負數(shù)。評分記錄如下:+15,+20,5,4,3,+4,+6,+2,+3,+5,+7,8.
(1)這12名同學中最高分和最低分各是多少?
(2)這些同學的平均成績是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1,(1)abc>0;(2)4a+2b+c>0;(3)4ac﹣b2<16a;(4)<a<;(5)b<c,其中正確的結(jié)論有( 。
A. (2)(3)(4)(5) B. (1)(3)(4)(5) C. (1)(3)(4) D. (1)(2)(5)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列不等式變形,成立的是( )
A.若m<n,則m-2<n-2B.若m<n,則2-m<2-n
C.若m<n,則-2m<-2nD.若m<n,則
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l:y=x﹣與x軸交于點B1,以OB1為邊長作等邊三角形A1OB1,過點A1作A1B2平行于x軸,交直線l于點B2,以A1B2為邊長作等邊三角形A2A1B2,過點A2作A2B3平行于x軸,交直線l于點B3,以A2B3為邊長作等邊三角形A3A2B3,…,則點A2017的橫坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形OABC中,OA=2,AB=4,雙曲線(k>0)與矩形兩邊AB、BC分別交于E、F.
(1)若E是AB的中點,求F點的坐標;
(2)若將△BEF沿直線EF對折,B點落在x軸上的D點,作EG⊥OC,垂足為G,請證明△EGD∽△DCF,并求出k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD的周長為36,對角線AC、BD相交于點O,點E是CD的中點,BD=12,則△DOE的周長為( )
A. 15 B. 18 C. 21 D. 24
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com