如圖①,在等腰△ABC中,底邊BC上有任意一點(diǎn),過點(diǎn)P作PE⊥AC,PD⊥AB,垂足為D、E,再過C作CF⊥AB于點(diǎn)F;
(1)求證:PD+PE=CF;
(2)若點(diǎn)P在BC的延長線上,如圖②,則PE、PD、CF之間存在什么樣的等量關(guān)系,請寫出你的猜想,并證明.

(1)證明:作PM⊥CF,
∵PD⊥AB,CF⊥AB,
∴∠FDP=∠DFM=∠FMP=90°,
∴四邊形PDFM是矩形,
∴PD=FM.
∵PE⊥AC,且PM⊥CF,
∴∠PMC=∠CEP=90°,
∵AB=AC,
∴∠B=∠ACB,
∵AB⊥FC,PM⊥FC,
∴AB∥PM,
∴∠MPC=∠B,
∴∠MPC=∠ECP,
在△PCM和△CPE中,
,
∴△PCM≌△CPE(AAS),
∴CM=PE,
∴PD+PE=FM+MC=CF;

(2)PD-PE=CF;
證明如下:
作CM⊥PD于M,同(1)得四邊形CMDF是矩形,則CF=DM,
∴CM∥AB,∴∠MCP=∠B,
又∠ACB=∠ECP(對頂角相等),
且AB=AC得到∠B=∠ACB,
∴∠MCP=∠ECP,
又PE⊥AC,CM⊥PD,∴∠PMC=∠PEC=90°,
在△PCM和△PCE中,
,
∴△PCM≌△PCE(AAS),
∴PM=PE,
∴PD-PE=PD-PM=DM=CF.
分析:要證明兩條線段的和等于其中一條線段,需要作輔助線:延長較短線段,把兩條加到一起或在較長線段上截。
(1)可以作PM⊥CF,構(gòu)造了矩形和一對全等三角形;
(2)類比(1)中的結(jié)論,很容易得到猜想,再進(jìn)一步證明就可.
點(diǎn)評:本題考查了等腰三角形的性質(zhì)及全等三角形的判定與性質(zhì);解答此題的關(guān)鍵是輔助線的作法,把證明兩條線段的和或差等于一條線段轉(zhuǎn)化為證明兩條線段相等的問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖1,在等腰梯形ABCD中,AB∥DC,AD=BC=4cm,AB=12cm,CD=8cm點(diǎn)P從A開始沿AB邊向B以3cm/s的速度移動(dòng),點(diǎn)Q從C開始沿CD邊向D以1cm/s的速度移動(dòng),如果點(diǎn)P、Q分別從A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)t為何值時(shí),四邊形APQD是平形四邊形?
(2)如圖2,如果⊙P和⊙Q的半徑都是2cm,那么,t為何值時(shí),⊙P和⊙Q外切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在等腰梯形ABCD中,AD∥BC,E是AB的中點(diǎn),過點(diǎn)E作EF∥BC交CD于點(diǎn)F.AB=4,BC=6,∠B=60度.
(1)求點(diǎn)E到BC的距離;
(2)點(diǎn)P為線段EF上的一個(gè)動(dòng)點(diǎn),過P作PM⊥EF交BC于點(diǎn)M,過M作MN∥AB交折線ADC于點(diǎn)N,連接PN,設(shè)EP=x.
①當(dāng)點(diǎn)N在線段AD上時(shí)(如圖2),△PMN的形狀是否發(fā)生改變?若不變,求出△PMN的周長;若改變,請說明理由;
②當(dāng)點(diǎn)N在線段DC上時(shí)(如圖3),是否存在點(diǎn)P,使△PMN為等腰三角形?若存在,請求出所有滿足要求的x的值;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•寧德)某數(shù)學(xué)興趣小組開展了一次活動(dòng),過程如下:
如圖1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小敏將一塊三角板中含45°角的頂點(diǎn)放在A上,從AB邊開始繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一個(gè)角α,其中三角板斜邊所在的直線交直線BC于點(diǎn)D,直角邊所在的直線交直線BC于點(diǎn)E.
(1)小敏在線段BC上取一點(diǎn)M,連接AM,旋轉(zhuǎn)中發(fā)現(xiàn):若AD平分∠BAM,則AE也平分∠MAC.請你證明小敏發(fā)現(xiàn)的結(jié)論;
(2)當(dāng)0°<α≤45°時(shí),小敏在旋轉(zhuǎn)中還發(fā)現(xiàn)線段BD、CE、DE之間存在如下等量關(guān)系:BD2+CE2=DE2
同組的小穎和小亮隨后想出了兩種不同的方法進(jìn)行解決;小穎的想法:將△ABD沿AD所在的直線對折得到△ADF,連接EF(如圖2)
小亮的想法:將△ABD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ACG,連接EG(如圖3);
小敏繼續(xù)旋轉(zhuǎn)三角板,在探究中得出當(dāng)45°<α<135°且α≠90°時(shí),等量關(guān)系BD2+CE2=DE2仍然成立,先請你繼續(xù)研究:當(dāng)135°<α<180°時(shí)(如圖4)等量關(guān)系BD2+CE2=DE2是否仍然成立?若成立,給出證明;若不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在等腰直角△ABC中,∠BAC=90°,AB=AC=2,點(diǎn)E是BC邊上一點(diǎn),∠DEF=45°且角的兩邊分別與邊AB,射線CA交于點(diǎn)P,Q.
(1)如圖2,若點(diǎn)E為BC中點(diǎn),將∠DEF繞著點(diǎn)E逆時(shí)針旋轉(zhuǎn),DE與邊AB交于點(diǎn)P,EF與CA的延長線交于點(diǎn)Q.設(shè)BP為x,CQ為y,試求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)如圖3,點(diǎn)E在邊BC上沿B到C的方向運(yùn)動(dòng)(不與B,C重合),且DE始終經(jīng)過點(diǎn)A,EF與邊AC交于Q點(diǎn).探究:在∠DEF運(yùn)動(dòng)過程中,△AEQ能否構(gòu)成等腰三角形,若能,求出BE的長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小敏將一塊三角板中含45°角的頂點(diǎn)放在A上,從AB邊開始繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一個(gè)角α,其中三角板斜邊所在的直線交直線BC于點(diǎn)D,直角邊所在的直線交直線BC于點(diǎn)E.
(1)小敏在線段BC上取一點(diǎn)M,連接AM,旋轉(zhuǎn)中發(fā)現(xiàn):若AD平分∠BAM,則AE也平分∠MAC.請你證明小敏發(fā)現(xiàn)的結(jié)論;
(2)當(dāng)0°<α≤45°時(shí),小敏在旋轉(zhuǎn)中還發(fā)現(xiàn)線段BD、CE、DE之間存在如下等量關(guān)系:BD2+CE2=DE2.同組的小穎和小亮隨后想出了兩種不同的方法進(jìn)行解決;小穎的想法:將△ABD沿AD所在的直線對折得到△ADF(如圖2);小亮的想法:將△ABD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ACG(如圖3).請你選擇其中的一種方法證明小敏的發(fā)現(xiàn)的是正確的.

查看答案和解析>>

同步練習(xí)冊答案