【題目】如圖①所示,已知MN∥PQ,點B在MN上,點C在PQ上,點A在點B的左側,點D在點C的右側,∠ADC,∠ABC的平分線相交于點E(不與B,D點重合),∠CBN=110°.
(1)若∠ADQ=140°,寫出∠BED的度數 (直接寫出結果即可);
(2)若∠ADQ=m°,將線段AD沿DC方向平移,使點D移動到點C的左側,其他條件不變,如圖②所示,求∠BED的度數(用含m的式子表示).
【答案】(1)55°;(2) ∠BED=215°-m°.
【解析】
(1)過點E作EF∥PQ,根據鄰補角的定義求出∠CBM=70°,∠ADP=40°,再根據角平分線的定義求出∠EBM=35°,∠EDP=20°,再根據兩直線平行,內錯角相等可得∠DEF=∠EDP,∠FEB=∠EBM,然后根據∠BED=∠DEF+∠FEB代入數據計算即可得解;
(2)過點E作EF∥PQ,根據鄰補角的定義求出∠CBM=70°,∠ADP=m°,再根據角平分線的定義求出∠EBM=35°,∠EDP=m°,再根據兩直線平行,內錯角相等可得∠DEF=∠EDP,∠FEB=∠EBM,然后根據∠BED=∠DEF+∠FEB代入數據計算即可得解.
(1)如圖(1),過點E作EF∥PQ.
∵∠CBN=110°,∠ADQ=140°,
∴∠CBM=70°,∠ADP=40°.
∵∠CDE=∠ADE,∠ABE=∠CBE,
∴∠EBM=35°,∠EDP=20°.
∵EF∥PQ,
∴∠DEF=∠EDP=20°.
∵EF∥PQ,MN∥PQ,
∴EF∥MN,
∴∠FEB=∠EBM=35°,
∴∠BED=∠DEF+∠FEB=20°+35°=55°;
故答案為:55°
(2)如圖(2),過點E作EF∥PQ.
∵∠CBN=110°,
∴∠CBM=70°.
∵∠CDE=∠ADE,∠ABE=∠CBE,
∴∠EBM=35°,∠EDQ=m°.
∵EF∥PQ,
∴∠DEF=180°-∠EDQ=180°-m°.
∵EF∥PQ,MN∥PQ,
∴EF∥MN,
∴∠FEB=∠EBM=35°,
∴∠BED=∠DEF+∠FEB=180°-m°+35°=215°-m°.
科目:初中數學 來源: 題型:
【題目】已知在數軸上有A,B兩點,點A表示的數為4,點B在A點的左邊,且AB=12.若有一動點P從數軸上點A出發(fā),以每秒1個單位長度的速度沿數軸向左勻速運動,動點Q從點B出發(fā),以每秒2個單位長度的速度沿著數軸向右勻速運動,設運動時間為t秒.
(1)寫出數軸上點B表示的數為________,P所表示的數為________(用含t的代數式表示);
(2)若點P,Q分別從A,B兩點同時出發(fā),問點P運動多少秒與Q相距3個單位長度?
(3)若點P,Q分別從A,B兩點同時出發(fā),分別以BQ和AP為邊,在數軸上方作正方形BQCD和正方形APEF如圖所示.求當t為何值時,兩個正方形的重疊部分面積是正方形APEF面積的一半?請直接寫出結論:t=__________秒.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】以圖1(以O為圓心,半徑1 的半圓)作為“基本圖形”,分別經歷如下變換能得到圖2的序號是 (多填或錯填得0分,少填酌情給分)
①只要向右平移1個 單位;
② 先以直線AB為對稱軸進行對稱變換,再向右平移1個單位;
③先繞著O旋轉180°,再向右平移1個單位;
④只要繞著某點旋轉180°.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在三角形ABC中,AC=4 cm,BC=3 cm,將三角形ABC沿AB方向向右平移得到三角形DEF,若AE=8 cm,DB=2 cm.
(1)求三角形ABC向右平移的距離AD的長;
(2)求四邊形AEFC的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,BD為AC的中線,過點C作CE⊥BD于點E,過點A作BD的平行線,交CE的延長線于點F,在AF的延長線上截取FG=BD,連接BG、DF.若AG=13,CF=6,則四邊形BDFG的周長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為響應我市“中國夢”“宜賓夢”主題教育活動,某中學在全校學生中開展了以“中國夢我的夢”為主題的征文比賽,評選出一、二、三等獎和優(yōu)秀獎.小明同學根據獲獎結果,繪制成如圖所示的統(tǒng)計表和數學統(tǒng)計圖.
等級 | 頻數 | 頻率 |
一等獎 | a | 0.1 |
二等獎 | 10 | 0.2 |
三等獎 | b | 0.4 |
優(yōu)秀獎 | 15 | 0.3 |
請你根據以上圖表提供的信息,解答下列問題:
(1)a= , b= , n= .
(2)學校決定在獲得一等獎的作者中,隨機推薦兩名作者代表學校參加市級比賽,其中王夢、李剛都獲得一等獎,請用畫樹狀圖或列表的方法,求恰好選中這二人的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面計算+++…+的過程,然后填空.
解:∵=(-),=(-),…,=(-),
∴+++…+
=(-)+(-)+(-)+…+(-)
=(-+-+-+…+-)
=(-)
=.
以上方法為裂項求和法,請參考以上做法完成:
(1)+=______;
(2)當+++…+x=時,最后一項x=______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著車輛的增加,交通違規(guī)的現象越來越嚴重,交警對某雷達測速區(qū)檢測到的一組汽車的時速數據進行整理,得到其頻數及頻率如表(未完成):
數據段 | 頻數 | 頻率 |
30﹣40 | 10 | 0.05 |
40﹣50 | 36 | |
50﹣60 | 0.39 | |
60﹣70 | ||
70﹣80 | 20 | 0.10 |
總計 | 200 | 1 |
(1)請你把表中的數據填寫完整;
(2)補全頻數分布直方圖;
(3)如果汽車時速不低于60千米即為違章,則違章車輛共有多少輛?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com