【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開設(shè)以下體育課外活動項(xiàng)目:A籃球、B乒乓球、C跳繩、D踢毽子,為了解學(xué)生最喜歡哪一種活動項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請回答下列問題:
(1)這次被調(diào)查的學(xué)生共有人;
(2)請你將條形統(tǒng)計(jì)圖補(bǔ)充完成;
(3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答).
【答案】
(1)200
(2)解:C項(xiàng)目對應(yīng)人數(shù)為:200﹣20﹣80﹣40=60(人);
補(bǔ)充如圖.
(3)解:列表如下:
甲 | 乙 | 丙 | 丁 | |
甲 | ﹨ | (乙,甲) | (丙,甲) | (丁,甲) |
乙 | (甲,乙) | ﹨ | (丙,乙) | (丁,乙) |
丙 | (甲,丙) | (乙,丙) | ﹨ | (丁,丙) |
丁 | (甲,。 | (乙,。 | (丙,。 | ﹨ |
∵共有12種等可能的情況,恰好選中甲、乙兩位同學(xué)的有2種,
∴P(選中甲、乙)= = .
【解析】解:(1)根據(jù)題意得:這次被調(diào)查的學(xué)生共有20÷ =200(人). 故答案為:200;
(1)由題意可知這次被調(diào)查的學(xué)生共有20÷ =200(人);(2)首先求得C項(xiàng)目對應(yīng)人數(shù)為:200﹣20﹣80﹣40=60(人),繼而可補(bǔ)全條形統(tǒng)計(jì)圖;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與恰好選中甲、乙兩位同學(xué)的情況,再利用概率公式即可求得答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南水北調(diào)工程中線自2014年12月正式通水以來,沿線多座大中城市受益,河南、河北、北京及天津四個(gè)。ㄊ校┑乃Y源緊張態(tài)勢得到緩解,有效促進(jìn)了地下水資源的涵養(yǎng)和恢復(fù).若與上年同期相比,北京地下水的水位下降記為負(fù),回升記為正,記錄從2013年底以來,北京地下水水位的變化得到下表:
時(shí)間 | 2013年底 | 2014年底 | 2015年底 | 2016年底 | 2017年底 | 2018年9月底 |
地下水位與上年同比變化量(單位:) | -0.25 | -1.14 | -0.09 | +0.52 | +0.26 | +2.12 |
以下關(guān)于2013年以來北京地下水水位的說法不正確的是( )
A. 從2014年底開始,北京地下水水位的下降趨勢得到緩解
B. 從2015年底到2016年底,北京地下水水位首次回升
C. 2013年以來,每年年底的地下水位與上年同比的回升量最大的是2018年
D. 2018年9月底的地下水位低于2012年底的地下水水位
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,操場的兩端為半圓形,中間是一個(gè)長方形. 已知半圓的半徑為r,直跑道的長為l,請用關(guān)于r,l的多項(xiàng)式表示這個(gè)操場的面積. 這個(gè)多項(xiàng)式能分解因式嗎?若能,請把它分解因式,并計(jì)算當(dāng)r=40m,l=30πm時(shí)操場的面積(結(jié)果保留π);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⑴如圖1,點(diǎn)M、N分別在∠AOB的邊OA、OB上,且OM=ON,過點(diǎn)M、N分別作MP⊥OA、NP⊥OB,MP、NP交于P,E、F分別為線段MP、NP上的點(diǎn),且∠EOF=∠AOB,延長PM到S,使MS=NF,連接OS,則∠EOF與∠EOS的數(shù)量關(guān)系為 ,線段NF、EM、EF的數(shù)量關(guān)系為
⑵如圖2,點(diǎn)M、N分別在∠AOB的邊OA、OB上,且OM=ON,, E、F分別為線段MP、NP上的點(diǎn),且∠EOF=∠AOB,⑴中的線段NF、EM、EF的數(shù)量關(guān)系是否仍然成立?若成立,請證明;若不成立,請寫出它們之間的數(shù)量關(guān)系,并證明。
⑶如圖3,點(diǎn)M、N分別在∠AOB的邊OA、OB上,且OM=ON,, E、F分別為線段PM、NP延長線上的點(diǎn),且∠EOF=∠AOB,⑴中的線段NF、EM、EF的數(shù)量關(guān)系是否仍然成立?若成立,請證明;若不成立,請寫出它們之間的數(shù)量關(guān)系,并證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市為加快美麗鄉(xiāng)村建設(shè),建設(shè)秀美幸福宿州,對A、B兩類村莊進(jìn)行了全面改建.根據(jù)預(yù)算,建設(shè)一個(gè)A類美麗村莊和一個(gè)B類美麗村莊共需資金300萬元;甲鎮(zhèn)建設(shè)了2個(gè)A類村莊和5個(gè)B類村莊共投入資金1140萬元.
(1)建設(shè)一個(gè)A類美麗村莊和一個(gè)B類美麗村莊所需的資金分別是多少萬元?
(2)乙鎮(zhèn)3個(gè)A類美麗村莊和6個(gè)B類村莊改建共需資金多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)正整數(shù)能表示成兩個(gè)連續(xù)偶數(shù)的平方差,那么這個(gè)正整數(shù)為“神秘?cái)?shù)”.
如:
因此,4,12,20這三個(gè)數(shù)都是神秘?cái)?shù).
(1)28和2012這兩個(gè)數(shù)是不是神秘?cái)?shù)?為什么?
(2)設(shè)兩個(gè)連續(xù)偶數(shù)為和(其中為非負(fù)整數(shù)),由這兩個(gè)連續(xù)偶數(shù)構(gòu)造的神秘?cái)?shù)是4的倍數(shù),請說明理由.
(3)兩個(gè)連續(xù)奇數(shù)的平方差(取正數(shù))是不是神秘?cái)?shù)?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題6分)在一次消防演習(xí)中,消防員架起一架25米長的云梯AB,如圖斜靠在一面墻上,梯子底端B離墻角C的距離為7米。
(1)求這個(gè)梯子的頂端距地面的高度AC是多少?
(2)如果消防員接到命令,按要求將梯子底部在水平方向滑 動后停在DE的位置上(云梯長度不變),測得BD長為8米,那么云梯的頂部在下滑了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校八、九年級部分學(xué)生的睡眠情況,隨機(jī)抽取了該校八、九年級部分學(xué)生進(jìn)行調(diào)查,已知抽取的八年級與九年級的學(xué)生人數(shù)相同,利用抽樣所得的數(shù)據(jù)繪制如圖的統(tǒng)計(jì)圖表:
睡眠情況分段情況如下
組別 | 睡眠時(shí)間x(小時(shí)) |
A | 4.5≤x<5.5 |
B | 5.5≤x<6.5 |
C | 6.5≤x<7.5 |
D | 7.5≤x<8.5 |
E | 8.5≤x<9.5 |
根據(jù)圖表提供的信息,回答下列問題:
(Ⅰ)直接寫出統(tǒng)計(jì)圖中a的值
(Ⅱ)睡眠時(shí)間少于6.5小時(shí)為嚴(yán)重睡眠不足,則從該校八、九年級各隨機(jī)抽一名學(xué)生,被抽到的這兩位學(xué)生睡眠嚴(yán)重不足的可能性分別有多大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)了二次根式的相關(guān)運(yùn)算后,我們發(fā)現(xiàn)一些含有根號的式子可以表示成另一個(gè)式子的平方,如:
3+2=2+2+1=()2+2+1=(+1)2;
5+2=2+2+3=()2+2××+()2=(+)2
(1)請仿照上面式子的變化過程,把下列各式化成另一個(gè)式子的平方的形式:
①4+2;②6+4
(2)若a+4=(m+n)2,且a,m,n都是正整數(shù),試求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com