【題目】完成下面的推理.
已知:如圖,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.
試說(shuō)明:∠EGF=90°.
解:因?yàn)?/span>HG∥AB(已知),
所以∠1=∠3( ).
又因?yàn)?/span>HG∥CD(已知),
所以∠2=∠4( ).
因?yàn)?/span>AB∥CD(已知),
所以∠BEF+ =180°( ).
又因?yàn)?/span>EG平分∠BEF(已知),
所以∠1=∠ ( ).
又因?yàn)?/span>FG平分∠EFD(已知),
所以∠2=∠ ( ),
所以∠1+∠2=( + ).
所以∠1+∠2=90°.
所以∠3+∠4=90°( ),即∠EGF=90°.
【答案】兩直線(xiàn)平行,內(nèi)錯(cuò)角相等;兩直線(xiàn)平行,內(nèi)錯(cuò)角相等;∠EFD;兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ);∠BEF;角平分線(xiàn)定義;∠EFD;角平分線(xiàn)定義;∠BEF;∠EFD;等量代換.
【解析】
依據(jù)平行線(xiàn)的性質(zhì)和判定定理以及角平分線(xiàn)的定義,結(jié)合解答過(guò)程進(jìn)行填空即可.
∵AB∥GH(已知),
∴∠1=∠3(兩直線(xiàn)平行,內(nèi)錯(cuò)角相等),
又∵CD∥GH(已知),
∴∠2=∠4(兩直線(xiàn)平行,內(nèi)錯(cuò)角相等).
∵AB∥CD(已知),
∴∠BEF+∠EFD=180°(兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)).
∵EG平分∠BEF(已知),
∴∠1=∠BEF(角平分線(xiàn)定義),
又∵FG平分∠EFD(已知),
∴∠2=∠EFD(角平分線(xiàn)定義),
∴∠1+∠2=(∠BEF+∠EFD),
∴∠l+∠2=90°,
∴∠3+∠4=90°(等量代換),
即∠EGF=90°.
故答案為:兩直線(xiàn)平行,內(nèi)錯(cuò)角相等;兩直線(xiàn)平行,內(nèi)錯(cuò)角相等;∠EFD;兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ);∠BEF;角平分線(xiàn)定義;∠EFD;角平分線(xiàn)定義;∠BEF;∠EFD;等量代換.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示是鼎龍高速路口開(kāi)往寧都方向的某汽車(chē)行駛的路程s(km)與時(shí)間t(分鐘)的函數(shù)關(guān)系圖,觀察圖中所提供的信息,解答下列問(wèn)題:
(1)汽車(chē)在前6分鐘內(nèi)的平均速度是 千米/小時(shí),汽車(chē)在興國(guó)服務(wù)區(qū)停了多長(zhǎng)時(shí)間? 分鐘;
(2)當(dāng)10≤t≤20時(shí),求S與t的函數(shù)關(guān)系式;
(3)規(guī)定:高速公路時(shí)速超過(guò)120千米/小時(shí)為超速行駛,試判斷當(dāng)10≤t≤20時(shí),該汽車(chē)是否超速,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店計(jì)劃購(gòu)進(jìn),兩種型號(hào)的電機(jī),其中每臺(tái)型電機(jī)的進(jìn)價(jià)比型多元,且用元購(gòu)進(jìn)型電機(jī)的數(shù)量與用元購(gòu)進(jìn)型電機(jī)的數(shù)量相等.
(1)求,兩種型號(hào)電機(jī)的進(jìn)價(jià);
(2)該商店打算用不超過(guò)元的資金購(gòu)進(jìn),兩種型號(hào)的電機(jī)共臺(tái),至少需要購(gòu)進(jìn)多少臺(tái)型電機(jī)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,DE∥AB.請(qǐng)根據(jù)已知條件進(jìn)行推理,分別得出結(jié)論,并在括號(hào)內(nèi)注明理由.
(1)∵DE∥AB,( 已知 )
∴∠2= . ( , )
(2)∵DE∥AB,(已知 )
∴∠3= .( , )
(3)∵DE∥AB(已知 ),
∴∠1+ =180°.( , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)課上,李老師出示了如下框中的題目.
在等邊三角形ABC中,點(diǎn)E在AB上,點(diǎn)D在CB的延長(zhǎng)線(xiàn)上,且ED=EC,如圖.試確定線(xiàn)段AE與DB的大小關(guān)系,并說(shuō)明理由. |
小敏與同桌小聰討論后,進(jìn)行了如下解答:
(1)特殊情況,探索結(jié)論
當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí),如圖1,確定線(xiàn)段AE與的DB大小關(guān)系.請(qǐng)你直接寫(xiě)出結(jié)論:
AE DB(填“>”,“<”或“=”).
圖1 圖2
(2)特例啟發(fā),解答題目
解:題目中,AE與DB的大小關(guān)系是:AE DB(填“>”,“<”或“=”).
理由如下:如圖2,過(guò)點(diǎn)E作EF∥BC,交AC于點(diǎn)F.
(請(qǐng)你完成以下解答過(guò)程)
(3)拓展結(jié)論,設(shè)計(jì)新題
在等邊三角形ABC中,點(diǎn)E在直線(xiàn)AB上,點(diǎn)D在直線(xiàn)BC上,且ED=EC.若△ABC的邊長(zhǎng)為1,AE=2,求CD的長(zhǎng)(請(qǐng)你直接寫(xiě)出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】張明和李強(qiáng)兩名運(yùn)動(dòng)愛(ài)好者周末相約到東湖綠道進(jìn)行跑步鍛煉.(1)周日早上6點(diǎn),張明和李強(qiáng)同時(shí)從家出發(fā),分別騎自行車(chē)和步行到離家距離分別為4.5千米和1.2千米的綠道落雁島入口匯合,結(jié)果同時(shí)到達(dá),且張明每分鐘比李強(qiáng)每分鐘多行220米,求張明和李強(qiáng)的速度分別是多少米/分?
(1)兩人到達(dá)綠道后約定先跑 6 千米再休息,李強(qiáng)的跑步速度是張明跑步速度的m倍,兩人在同起點(diǎn),同時(shí)出發(fā),結(jié)果李強(qiáng)先到目的地n分鐘.
①當(dāng)m=12,n=5時(shí),求李強(qiáng)跑了多少分鐘?
②張明的跑步速度為 米/分(直接用含m,n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知一次函數(shù)y=kx+b(k≠0)的圖象與x軸、y軸的交點(diǎn)分別為A、B兩點(diǎn).且與反比例函數(shù)y=(m≠0)的圖象在第一象限交于點(diǎn)C,CD垂直于x軸,垂足為D,若OA=OB=OD=1.
(1)一次函數(shù)和反比例函數(shù)的解析式;
(2)求△ACD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),連接PA、PB、PC.
(1)將△PAB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到△P′CB,若AB=m,PB=n(n<m).求△PAB旋轉(zhuǎn)過(guò)程中邊PA掃過(guò)區(qū)域(陰影部分)的面積;
(2)若PA= ,PB=2,∠APB=135°,求PC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓O的直徑,過(guò)點(diǎn)O作弦AD的垂線(xiàn)交半圓O于點(diǎn)E,交AC于點(diǎn)C,使∠BED=∠C.
(1)判斷直線(xiàn)AC與圓O的位置關(guān)系,并證明你的結(jié)論;
(2)若AC=8,cos∠BED=,求AD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com