【題目】從2014年春季開始,我縣農村實行垃圾分類集中處理,對農村環(huán)境進行綜合整治,靚化了我們的家園.現(xiàn)在某村要清理一個衛(wèi)生死角內的垃圾,若用甲、乙兩車運送,兩車各運15趟可完成,已知甲、乙兩車單獨運完此堆垃圾,乙車所運趟數(shù)是甲車的3倍,求甲、乙兩車單獨運完此堆垃圾各需運多少趟?

【答案】解:設甲車單獨運完此堆垃圾需運x趟,則乙車單獨運完此堆垃圾需運3x趟,
根據(jù)題意得: + =1,
解得:x=20,
經檢驗:x=20是方程的解,且符合題意,
則20×3=60(趟).
答:甲車單獨運完此堆垃圾需運20趟,乙車單獨運完此堆垃圾需運60趟.
【解析】設甲車單獨運完此堆垃圾需運x趟,則乙車單獨運完此堆垃圾需運3x趟,根據(jù)兩車各運15趟可完成總任務,列方程求解.
【考點精析】通過靈活運用分式方程的應用,掌握列分式方程解應用題的步驟:審題、設未知數(shù)、找相等關系列方程、解方程并驗根、寫出答案(要有單位)即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知菱形ABCD的對角線相交于點O,延長AB至點E,使BE=AB,連結CE,若∠E=50°,求∠BAO的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖ABC與DEF都是等腰直角三角形,ACB=EDF=90°,且點D在AB邊上,AB、EF的中點均為O,連結BF、CD、CO,顯然點C、F、O在同一條直線上,可以證明BOF≌△COD,則BF=CD

解決問題

1將圖中的RtDEF繞點O旋轉得到圖,猜想此時線段BF與CD的數(shù)量關系,并證明你的結論;

2如圖,若ABC與DEF都是等邊三角形,AB、EF的中點均為O,上述1中的結論仍然成立嗎?如果成立,請說明理由;如不成立,請求出BF與CD之間的數(shù)量關系;

3如圖,若ABC與DEF都是等腰三角形,AB、EF的中點均為0,且頂角ACB=EDF=α,請直接寫出的值用含α的式子表示出來

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三角形的角平分線是(  )

A. 射線 B. 線段

C. 直線 D. 射線或直線

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一元二次方程x2+px2=0的一個根為-1,則p的值為( )

A.1B.2C.1D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:22﹣|﹣2|=_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方程3x2﹣1=0的一次項系數(shù)是( )
A.﹣1
B.0
C.3
D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某區(qū)教研部門對本區(qū)初二年級的學生進行了一次隨機抽樣問卷調查,其中有這樣一個問題:
老師在課堂上放手讓學生提問和表達
A.從不 B.很少 C.有時 D.常常 E.總是
答題的學生在這五個選項中只能選擇一項.如圖是根據(jù)學生對該問題的答卷情況繪制的兩幅不完整的統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:
(1)該區(qū)共有 名初二年級的學生參加了本次問卷調查;
(3)在扇形統(tǒng)計圖中,“總是”所占的百分比為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)|+16|+|-24|-|-30|;

(2)|+3|×|-6|+|-32|÷|-8|.

查看答案和解析>>

同步練習冊答案